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Abstract

Writing parallel programs is not easy, and debugging them

is usually a nightmare. To cope with these di�culties, a

structured approach to parallel programs using skeletons

and template based compiler techniques has been developed

over the past years by several researchers, including the P3L

group in Pisa.

This approach is based on the use of a set of primitive

forms that are just functionals implemented via templates

exploiting the underlying parallelism, so it is natural to ask

whether marrying a real functional language like Ocaml with

the P3L skeletons can be the basis of a powerful parallel pro-

gramming environment. We show that this is the case: our

prototype, written entirely in Ocaml using a limited form of

closure passing, allows a very simple and clean programming

style, shows real speed-up over a network of workstations

and, as an added fundamental bonus, allows logical debug-

ging of parallel programs in a sequential framework without

changing the user code.

Key words: skeletons, functional languages, closures,

parallelism.

1 Introduction

Functional programming languages have greatly improved

since their appearance in the sixties. The performance

achieved in functional program execution is now compara-

ble to the performance achieved using classical imperative

programming languages [17, 21]. In addition, modern func-

tional programming languages have advanced features, like

strong typing and advanced module systems, that improve

both programmer productivity and code quality and main-

tainability.

But what about parallel functional programming? Since

the very beginning it has been claimed that functional pro-

gramming languages are implicitly parallel, mainly due to

the possibility of using eager evaluation strategies for all the

strict functions appearing in a program. Eager evaluation

strategies, in conjunction with the referential transparency

property sported by pure functional languages, allow func-

tional languages compilers (or interpreters) to schedule in
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parallel the evaluation of all the parameters of a strict func-

tion call. Both the possibility of automatically exploiting

this kind of implicit parallelism through parallel graph re-

duction or other compiler techniques [5, 19, 26, 15] and

the possibility of providing the user with ways to annotate

(somehow) functional programs in order to drive parallelism

exploitation [18] have been explored, with di�erent results.

After Cole's work on skeletons [8], a new research track has

been initiated concerning parallel functional programming

with skeletons. As an example, Bratvold showed how skele-

tons can be looked for and exploited within an ML dialect

[6], and Darlington's group at the Imperial College in Lon-

don, started considering plain functional skeletons [12] and

came up with the de�nition of a skeleton functional coordi-

nation language [14].

Some of the authors of this paper developed at the Uni-

versity of Pisa a skeleton parallel programming language,

p3l [2]. p3l is actually an imperative programming lan-

guage, although the skeleton framework used is completely

functional. The p3l compiler uses an original template-

based parallelism exploitation technique achieving very good

performance as well as programmability and portability fea-

tures [3]. The authors started looking at the possibility of

exporting the template-based skeleton parallelism exploita-

tion techniques to the functional world [11].

In the meanwhile, the Objective Caml functional pro-

gramming language has been developed at INRIA Rocquen-

court, in France. Objective Caml [21] (ocaml in the se-

quel) is a functional language of the ML family [24]. It

supports both functions as �rst-class values and full imper-

ative features, in particular arrays modi�able in-place. This

combination of features makes it well adapted to skeleton-

based programming: higher-order functions (functions tak-

ing user-provided functions as arguments) can be suitably

used to model/implement skeletons, while the imperative

features can be exploited to provide a parallel implementa-

tion of skeletons. Other useful features of ocaml include a

powerful module system, allowing several implementations

of the skeletons to be substituted for one another without

changing the user code, and a built-in marshaler, allowing

transmission of arbitrary data structures over byte streams,

based on the same structural information used by the ocaml

garbage collector.

The goal of the authors, at the beginning of the ocamlp3l

project, was to assess the merits and the feasibility of the

integration of the p3l language inside ocaml. This gave

ocamlp3l, a programming environment that allows to write

parallel programs in ocaml according to the skeleton model



supported by the parallel language p3l. It provides seamless

integration of parallel programming and functional program-

ming and advanced features like sequential logical debugging

of parallel programs and strong typing, useful both in teach-

ing parallel programming and in building full-scale applica-

tions. In addition, we wanted the skeleton implementation

to run on widely available computer systems.

During the implementation of the system, it turned out

that we could get more than that. In our implementation the

user code containing the skeleton expressions can be linked

with di�erent modules in order to get either a parallel exe-

cutable (running on a network of workstation) or a sequen-

tial executable (running on a single workstation). Therefore

users are enabled to perform logical program debugging us-

ing the sequential version of the program and then to move

to the parallel version, by just changing a linker option.

The high level of abstraction provided by functional pro-

gramming, coupled with the ability to send closures over an

I/O channel provided the key to an elementary and robust

runtime system that consists of a very limited number of

lines of code.

2 Skeletons

The skeleton parallel programming model supports struc-

tured parallel programming [8, 12, 10]. Using this model,

the parallel structure/behavior of an application has to be

expressed by using skeletons picked up from of a set of prede-

�ned ones, possibly in a nested way. Each skeleton models a

typical pattern of parallel computation and it is parametric

in the computation performed in parallel. Skeletons can be

understood as second order functionals that model the par-

allel computation coming out from the application of a given

parallelism exploitation pattern to the parameter functions.

As an example, a common skeleton is the pipeline

one. Pipeline is a stream parallel skeleton. The paral-

lelism exploited comes from performing in parallel compu-

tations relative to di�erent input data sets, appearing on

the input data stream. In particular the pipeline skele-

ton models the parallelism coming from the parallel com-

putation of di�erent stages of a function onto di�erent

input data items appearing on the input data stream.

In other words, pipeline(f
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In general, a skeleton programming model provides a set

S of skeletons that the programmer can use to model the

parallel behavior of an application. Simpler skeleton models,

such as the original models by Cole and Darlington [8, 12] do

not allow skeleton composition. Therefore, the programmer

must simply pick up the \best" skeleton from the set S and

then provide the function parameters as sequential code. As

an example, a program exploiting pipeline parallelism can

be expressed by using the pipeline skeleton and by providing

sequential code for the f

i

appearing in the pipeline call.

Other skeleton models, such as p3l[2], allow full skeleton

composition. In this case, a sequential skeleton is included

in S and the function parameters of any other skeleton must

also be skeletons. Therefore programmers can either provide

the function parameters of a pipeline by using the sequential

skeleton to encapsulate sequential code, or by using other

skeletons (including the pipeline one) to express any of the

pipeline stages.

In ocamlp3l, we allow skeletons to be arbitrarily com-

posed, and we provide the user with both stream parallel

and data parallel skeletons (data parallelism being the one

coming from performing in parallel computations relative to

a single input data item).

The skeleton set of ocamlp3l contains most of the skele-

tons appearing in p3l, although some of the ocamlp3l skele-

tons are actually simpli�ed versions of those appearing in

p3l: (here, we will denote by f the function computed by

skeleton F on a single data item of its input data stream):

Farm skeleton The farm skeleton, written farm, computes

in parallel a function f over di�erent data items appear-

ing in its input stream. From a functional viewpoint,

given a stream of data items x

1

; : : : ; x

n

, farm(F; k)

computes f(x

1

); : : : ; f(x

n

) (F being the skeleton pa-

rameter). Parallelism is exploited by having k inde-

pendent, parallel processes computing f on di�erent

items of the input stream.

Pipeline skeleton The pipeline skeleton, denoted by the

in�x operator |||, performs in parallel the computa-

tions relative to di�erent stages of a function over dif-

ferent data items of the input stream. Functionally,

F
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belonging to the input stream.

Parallelism is exploited by having n independent par-

allel processes. Each process computes a function f

i

over the data items produced by process computing

f

i�1

and delivers results to process computing f

i+1

.

Map skeleton The map skeleton, written mapvector,

computes in parallel a function over all the data items

of a vector, generating a new vector. Therefore, for

each vector X appearing in the input data stream,

mapvector(F; n) computes the function f over all the

items of the vector, using n di�erent, parallel processes

computing f over distinct vector items.

Reduce skeleton The reduce skeleton, written

reducevector, folds a binary, associative func-

tion over all the data items of a vector. Therefore,

reducevector(F; n) computes x

1

fx

2

f : : : fx

n

out of

the vector x

1

; : : : ; x

n

, for each one of the vectors

appearing in the input data stream. The computation

is performed using n di�erent, parallel processes

computing f .

We also included a sequential skeleton, written seq, that is

only used to transform a plain function into a skeleton, in

such a way that sequential code can be used as a skeleton

parameter. It's worthwhile to point out that the choice of

the skeletons of ocamlp3l pretends to be neither complete

nor de�nitive. Our goal was to investigate the feasibility of

integrating the skeleton programming model within a func-

tional programming model. Therefore new skeletons can be

added to ocamlp3l in the future.

2.1 An example

In order to understand how an ocamlp3l application can

be written, let suppose that we want to develop a parallel

application plotting the Mandelbrot set. Provided that we

have de�ned ocaml functions:
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Figure 1: Overall design of the ocamlp3l prototype compiler

1. computing the color of a pixel in the set out of its co-

ordinates,

2. displaying a color pixel of given coordinates on the dis-

play,

3. opening the graphic display,

4. closing the graphic display after a user acknowledge,

5. generating a pixel coordinate record each time the func-

tion is called and raising an End of file exception

when there are no more pixels to generate (this function

keeps state in a global, mutable variable),

then we can write the application as follows:

(* link skeleton implementation code *)

open Parp3l

open Nodecode

open Template

(* suitable, plain ocaml, sequential code *)

let color_pixel coords = ... ;;

let display_pixel (coords,col) = ... ;;

let open_display () = ... ;;

let close_display () = ... ;;

let generate_a_pixel () = ... ;;

let dummy_fun () = () ;;

(* set up the parallel program structure *)

let mandelprogram () =

startstop

(generate_a_pixel,dummy_fun)

(display_pixel,open_display,close_display)

(farm(seq(color_pixel),10)) in

pardo mandelprogram;;

where:

� the open directives just tell the ocaml compiler to com-

pile and link other ocaml modules (see Section 3)

� the startstop expression sets up a framework suitable

for generating an input stream to the skeleton program

(�rst parameter couple: the �rst function generates

each item of the input stream, the second function ini-

tializes the input stream), for processing the output

stream produced by the skeleton program (second pa-

rameter tuple: the �rst item is the function processing

each output stream item, the second and the third pro-

vide to initialize and �nalize the output stream han-

dling process), and for evaluating a given skeleton pro-

gram (the third parameter of startstop provides the

actual skeleton program)

� the pardo expression initiates the program evaluation,

according to the semantics de�ned by the modules in-

cluded with the open directives. In the case of the code

shown above, the farm skeleton is evaluated in parallel

setting up a network of 10 independent processes com-

puting the color of the pixels, plus a scheduler process

and a process collecting and displaying colored pixels

on the screen. In case the user included the sequen-

tial skeleton implementation module with the directive

open Seqp3l, instead, the farm skeleton is computed

within a single, sequential process.

3 ocamlp3l implementation

We implemented a prototype compiler generating executable

code out of the ocamlp3l source code. The prototype com-

piler is entirely written in ocaml and is made out of a set of

modules. Depending on the set of modules linked with the

user code, the compiler either produces code that can be run

on a single workstation or code that can be run in parallel

onto a network of workstation. In both cases the code can

either be ocaml byte-code or native code (see Figure 1).

In case of sequential execution, the modules linked to

the user code contain second order functions for each one of

the skeletons used. These functions actually implement the

sequential semantics of the skeletons, i.e. sequentially com-

pute the result of applying the skeleton to the parameters

(see Figure 2 left).

In case of parallel execution, the modules linked to user

code contain second order functions for each one of the skele-

tons that build an abstract skeleton tree out of the user code.

The skeleton tree is traversed, and a (distributed) process

network is logically assigned for the execution of each skele-

ton. Therefore a logical process graph is obtained. Then,

this graph is traversed and logical channels (actually Unix

sockets) are assigned as the input/output channels of each

one of the processes. Finally, a closure is derived relative to

each one of the processes in the graph. These closures are

computed looking at the functions stored in the template

library. Each one of this functions models the behavior of

one of the processes implementing a skeleton. E.g. there

are template process functions modeling a pipeline stage, a

farm worker, a farm emitter process, etc. When the parallel

program is eventually to be run onto a workstation network,

these closures will be used to specialize each one of the pro-

cesses executed on a workstation, in such a way that the

collection of processes participating in the program execu-

tion actually implement the logical process network derived

from the skeleton tree (see Figure 2 right).

More details on the ocamlp3l compiler can be found in

[9]; in the following sections we will discuss the main features

of the prototype compiler.
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usercode.ml

let prog = farm(seq(f),5) ||| farm(seq(g),3);;

...  pardo(...prog...) ;;

let (|||) f g = fun x -> g(f x);;

let seq f = f;;
let farm (f,n) = f;;

... seqp3l.ml

(bytecode or native) code computing
the result of skeleton program sequentially

(bytecode or native) code to be run
on networked workstations

Figure 2: Compiler algorithm sketch: sequential code generation (left) parallel code generation (right)

3.1 Closure passing as distributed higher order pa-

rameterization

In order to implement parallel skeleton execution, we choose

to use an SPMD (Single Program Multiple Data) approach:

all the nodes of the network will run the same program,

namely a \process template" interpreter. Each one of the

nodes will be specialized, by information provided by a spe-

cial \root" node during the initialization process, with the

process template code that it must run. The specialization

information includes the closure of the function computed by

the node as well as the communication channels the process

must use. Overall, the specialized node collection imple-

ments a process network implementing parallel execution of

the skeletons provided in the user code.

Therefore, the root node performs the following tasks:

� executes the skeleton expressions of the user program.

As a consequence a data structure describing the pro-

cess network is built, which is used to compute the

con�guration information for each node in the process

network.

� maps virtual nodes onto the pool of available machines,

� initializes a socket connection with all the participating

nodes,

� gets a local port addresses from each of them,

� sends out to each node the addresses of its connected

neighbors (these three steps provide an implementation

of a centralized deadlock free algorithm interconnect-

ing the other nodes according to the process network

speci�ed by the skeleton expression),

� sends out the specialization information (the function

it must perform) to each node.

This very last task requires a sophisticated operation:

sending a function (or a closure) over a communication chan-

nel. Section 3.2 discusses the implementation of this opera-

tion.

On the other side, all the nodes di�erent from the root

one simply wait for a connection to come in from the root

node, then send out the address of the local socket port

they allocate to do further communication, wait for the list

of neighbors and for the specialization function, and then

simply perform the specialization function until termination.

3.2 Marshaling of function closures

Most garbage-collected languages provide a built-in mar-

shaler (also called serialization) that takes any data struc-

ture and encodes it as a sequence of bytes, suitable for trans-

mission over a communication channel; the symmetric un-

marshaling primitive then rebuilds the data structure at the

receiving end. Marshaling exploits the same run-time type

information that guides the garbage collector.

In functional languages, marshaling is often restricted to

\pure" data structures that do not contain any function clo-

sures. Marshaling function closures is delicate because it is

unclear how to transmit the code pointers embedded in the

closures. In distributed programming, the usual solution is

not to transmit the code of functions, but rebuild a proxy

function on the client side. The proxy transparently sends

its argument back to the originating site, where the function

application is evaluated, and its result sent back to the caller.

This is the traditional remote procedure call or network ob-



jects [23, 4]. However, this solution is not appropriate for

us, as it prevents any parallelism: all function evaluations

are performed sequentially on the originating site.

To allow parallel evaluation in a general distributed set-

ting, actual code mobility is required: the code of the

function must be transmitted \on the wire". This puts

strong constraints on the code, which must be fully position-

independent and relocatable. In particular, all branches

must be PC-relative, and references to global variables must

be avoided by putting the global variables in the function

closure. Some bytecodes have been designed that ful�ll these

requirements [7, 16]. However, neither the ocaml bytecode

nor the native code generated by ocamlopt are fully relocat-

able. Workarounds involving sending relocation information

along with the code have been proposed [20], but are quite

complex. The size of the transmitted code is also a concern

in many applications.

For ocamlp3l, a much simpler solution exists. We are

doing SPMD applications instead of general distributed ap-

plications: the same program text is running on all commu-

nicating machines. (The application is statically linked, and

we disallow dynamic loading of object �les.) Hence, we can

simply send a code address on the wire (as o�sets from the

beginning of the code section), without sending the piece of

code pointed to by the address, and be certain that this code

address will point to the correct piece of code in the receiver.

To guard against code mismatches, the sender transmits an

MD5 checksum of its own code along with the code address:

this allows the receiver to check quickly that it is running

the same code as the sender. (This check proved very use-

ful to guard against inconsistencies when accessing the same

NFS-mounted �le system from di�erent workstations.) We

extended the standard ocaml marshaler to support this form

of closure sharing; the changes are now integrated in the cur-

rent ocaml distribution.

Like all code mobility schemes, our marshaling of clo-

sures require that the sender and receiver run the same in-

struction set. This is no problem if the application is com-

piled with the ocaml bytecode compiler, since the bytecode

is platform-independent. If the application is compiled with

the native-code compiler, communication is restricted to ma-

chines having the same processor architecture. In other

terms, we restrict the SPMD paradigm to \single binary

executable program, multiple data".

To summarize, the possibility of sending closures in the

implementation allowed us to obtain a form of higher order

distributed parameterization that keeps the runtime code to

a minimum size (the source codes of the full system is less

than 20Kbytes).

3.3 Communication and process support

According to the initial goals of the ocamlp3l project, we

looked for a simple, portable and reliable communication

system. We were interested in coming up with a solution

that can be actually used onto widely available, low cost

systems. Eventually we chose to use plain TCP/IP sock-

ets. First of all, this choice allowed both the Unix world

and the Windows world to be addressed. Second, no par-

ticular customization of the support is needed to match the

ocamlp3l features. Finally, the point-to-point, connection

oriented, stream model provided by Unix sockets is perfect

to model data streams of ocamlp3l. On the down side,

the adoption of Unix sockets presents an evident disadvan-

tage which is the low performance achieved in communica-

tions. This disadvantage, however, simply implies that

parallelism can be usefully exploited only when the commu-

nication/computation ratio is small. It does not a�ect the

overall features of prototype.

As far as the process model is concerned, all we need is a

mechanism allowing an instance of the template interpreter

to be run onto di�erent workstations belonging to a local

area network. The Unix rsh mechanism matches this re-

quirement, and a similar mechanism can be used within the

Windows environment. Note that, as processes are gener-

ated and run on di�erent machines just at the beginning of

the ocamlp3l program execution, any considerations about

performance in rsh-ing processing is irrelevant.

As an alternative to TCP/IP sockets, we are also con-

sidering implementing ocamlp3l on top of the MPI library

for message passing in distributed-memory multiprocessors

[22]. On networks of workstations, MPI is implemented

on top of TCP/IP sockets and therefore has no advantages

over our hand-written implementation. However, vendors of

distributed-memory supercomputers (such as the Cray T3E

and SGI's and Digital's clusters of multiprocessors) provide

implementations of MPI that take advantage of the fast, cus-

tom interconnection networks of those machines. ocamlp3l

over MPI would thus bene�t from these custom commu-

nication hardware without sacri�cing portability. Another

interesting feature of MPI is the group communication prim-

itives (broadcast, scatter, gather, reduce) that can be imple-

mented very e�ciently on certain communication topologies.

3.4 Template implementation

Within ocamlp3l, the skeleton instances of a program are

implemented by using implementation templates, i.e. pro-

cess networks implementing the parallel semantics of the

skeleton, following the approach adopted within the p3l

compiler [2]. Figure 3 shows the implementation templates

used. Each \white" circle represents a whole process net-

work computing a skeleton. In case the skeleton is seq(F )

the network has a single process computing the sequential

code of the function f over all the data items appearing onto

the input stream. Each \black" circle represents a process

generated by the ocamlp3l implementation, aimed at either

coordinating parallel computation or at merging/splitting

the data streams according to the skeleton semantics. Fi-

nally, arrows represent communication channels (hosted by

Unix sockets) implementing data streams.

Within ocamlp3l these implementation templates can be

nested to any depth, reecting the full composability of the

skeletons provided to the programmer. Each template ap-

pearing in ocamlp3l:

� is parametric in the parallelism degree exploited. As

an example the farm template may accommodate any

numbers of worker processes.

� is parametric in the skeleton computed as the body of

the skeleton. As an example, the farm template is spe-

cialized by the skeleton representing the farm worker.

� provides a set of process templates i.e. parametric

process speci�cations that can be instantiated to get

the real process codes building out the each one

of the processes participating in the parallel evalua-

tion of a ocamlp3l program. Such process templates

are provided as functions in one of the library �les
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Figure 3: Templates used to implement the ocamlp3l skele-

tons

(template.ml) of ocamlp3l. Parameters to the pro-

cess template include the input and output stream

(streams) speci�cation as well as the \user" function

to be computed on the items appearing onto the input

stream in order to get the data items that have to be

delivered onto the output stream.

3.5 Template based compilation

The whole compilation process transforming an ocamlp3l

skeleton program into the parallel process network imple-

menting the program can be summarized in three steps (see

Figure 2 right):

� �rst, the skeleton code is transformed into a skeleton

tree data structure, recording all the signi�cant details

of the skeleton nesting supplied by the user code

� then, the skeleton tree is traversed and processes are

assigned to each skeleton according to the implemen-

tation templates. During this phase, processes are de-

noted by their input/output channels, identi�ed via a

unique number

� �nally, once the number and the kind of parallel pro-

cesses building out the skeleton code implementation

is known, code is generated that either delivers the

proper closures, derived by using the process templates,

to the \template interpreter" instances running on dis-

tinct workstations (\root" node), or waits for a closure

and repeatedly computes this closure on the proper

input and output channels until an EndOfFile mark

is received (non-\root" nodes). Closures are sent to

the various template interpreter nodes in a round-robin

way. This policy will be changed in the next versions of

ocamlp3l, in order to be able to achieve a better load

balancing.

4 Program development with ocamlp3l

In order to develop a new parallel application using

ocamlp3l the user is expected to perform the following

steps:

� develop skeleton code modeling the application at

hand. This just requires a full understanding of the

skeleton semantics and usually allows the user to reuse

consistent portions of existing applications written in

plain ocaml.

� test the functionality of the new application by supply-

ing relevant input data items and looking at the results

computed using the sequential skeleton semantics. In

case of problems, the user may run the sequential de-

bugging tools to overcome the problem.

� link the parallel skeleton semantics module and run the

application onto the workstation network. Provided

that the application was sequentially correct, no new

errors will be found at this step, assuming the runtime

support is correct.

� look at the performance results achieved by running the

application on the number of processing nodes avail-

able and possibly modify the program either by ad-

justing the signi�cant performance parameters (such

as the parallelism degree of the farm, mapvector and

reducevector), or by changing the skeleton nesting

used to exploit parallelism (insert farms, split pipeline

stages, etc.).

Therefore, the ocamlp3l user developing a parallel appli-

cation is not involved in any one of the error prone, boring

and heavy activities usually related to parallel programming

(process scheduling, explicit communication handling, bu�er

management, etc.). These \details" are completely hidden

within the compiler libraries/code.

Performance debugging (or tuning) is the activity a user

is supposed to perform in order to get the last MIPS out of

his code running on the parallel machine at hand. In order

to perform performance debugging the programmer must

look out for bottlenecks in the computation of his program

and take actions aimed at removing such bottlenecks. An

ocamlp3l programmer may look at the times spent in the

computation of the di�erent stages of his skeleton program

and try to understand if there is some stage which behaves

as a bottleneck. Once individuated the stage he can perform

di�erent actions:

� if the stage is already parallel (e.g. it is a farm) the

user can augment the parallelism degree of the stage

(e.g. put a bigger int as the second parameter of the

farm call)

� if the stage is not parallel, the user can �gure out strate-

gies to parallelize it by using the proper skeletons.

In both cases, the user is only asked to modify the paral-

lelization strategies of the program, either in the quality or

in the quantity of parallelism exploited. He is not asked to

modify process or communication code, which is the thing

normally happening when using other parallel programming

approaches.

5 Preliminary results

The preliminary results we obtained concern both pro-

grammability and performance.
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Figure 4: bytecode application scalability (farm/map tem-

plate)

Programmability Parallel applications can be easily de-

veloped in ocamlp3l. Once a programmer has a clear idea of

the skeletons available, it takes a very short time to trans-

form a sequential code into a skeleton program. Times

involved in designing a parallel application when the pro-

grammer has explicitly to deal with communications, syn-

chronization and process handling are orders of magnitude

higher. The major activity a user has to perform when

developing ocamlp3l applications is performance debug-

ging/tuning. However, changing either the parallel struc-

ture or the parallelism degree of an ocamlp3l application

is a very simple and fast task. Therefore, the user is both

encouraged to experiment di�erent parallel structures of his

application, and supported in the performance tuning activ-

ity. Overall, we experimented times of minutes to transform

sequential ocaml code into running parallel ocamlp3l appli-

cations and times of minutes/hours to perform performance

tuning of an ocamlp3l application.

We have developed several test applications, in order to

validate the ocamlp3l prototype and to evaluate its per-

formance �gures. These applications include well-known

applications, such as Mandelbrot set computation and ma-

trix multiplication as well as more complex applications, in

particular a protein folding application currently developed

by a research team at the University of La Plata in Ar-

gentina. This application computes the three-dimensional

folding shape of protein chains.

Performance Preliminary results concerning perfor-

mance are encouraging. We measured actual speedups when

running the parallel code on small workstation networks.

These speedups turned out to be almost linear when the

communication/computation ratio of each process belong-

ing to the process network implementing the ocamlp3l pro-

gram was suitably small. Figure 4 and 5 show the scala-

bility of a very simple application, just exploiting a farm

skeleton. Both Figures plot application completion time (in

seconds) relative to the same application operating on dif-

ferently sized datasets (the upper curves referring to bigger

datasets). Figure 4 plots completion time of application

code compiled to bytecode, whereas Figure 5 is relative to
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Figure 5: native code application scalability (farm/map

template)
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Figure 6: Scalability: farm/map template scalability (native

code) low communication/computation ratio

the same applications compiled to native code. Scalability

is close to ideal one (i.e. the speedup is almost linear) al-

though in the bytecode runs the measured times are closer

to ideal ones than in native code runs. This is due to the fact

that in the second case, local computations are performed

faster than in the �rst case, while interprocess communi-

cation always take the same time (therefore communica-

tion/computation ratio is higher). However, if we decrease

the communication/computation ratio by augmenting the

data set size, we get closer ideal/measured curves even in

case of native code compiled applications (see Figure 6, rel-

ative to the same application of Figures 4 and 5 run onto

a larger dataset). All these Figures plot completion times

relative to application run on a network of up to four ho-

mogeneous (same processor, a 233 Mhz Pentium II, same

memory, cache and disk size and speed, etc.) machines.

We also measured the overhead introduced by ocamlp3l

modules. First of all, we run a simple farm application com-
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Figure 7: Number of workers in a farm/map template vs.

completion time (native code)

piled by linking the parallel semantics module and with a

parallelism degree 1 speci�ed in the farm code. Then we

run the same application compiled by linking the sequential

semantics module. Finally we run a plain ocaml application

computing the same algorithm and using a list to emulate

the task stream. All the three applications were run onto

the same machine. We observed that in bytecode runs the

parallel semantics module introduced a rough 1% overhead,

while in the native code runs it introduced a 1.5% overhead

with respect to the runs using the sequential module. No

sensible overhead was introduced by sequential semantics

module with respect to the hand-written ML application

code.

Finally, we evaluated the e�ect of \excess parallelism"

on completion time. We considered a simple application just

exploiting farm parallelism and we measured the completion

time in two cases:

� varying the parallelism degree of the farm template,

keeping the number of PEs used to execute the appli-

cation constant (Figure 7)

� varying the number of instances of the template inter-

preter process per PE, keeping the number of PEs used

to execute the application constant (Figure 8)

In the former case, the excess parallelism does not in-

crease the application completion time and slightly smaller

completion times have been measured (the gain is below 1%,

however). In the latter case, we observed a better behavior:

the maximum decrease in completion time was around 15%.

The performance results discussed here are relative to a

very small workstation network and to simple application

code. Indeed, we actually used in this applications the tem-

plate which implements farm, map and reduce skeletons, i.e.

the most critical one, and we fully experimented the whole

runtime system based on closure passing.

As expected, the results showed that scalability actu-

ally depends on the amount of computation performed af-

ter receiving a single task (i.e. on the already mentioned

communication/computation ratio). Therefore, when mov-

ing to larger networks, we expect to get good performances
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Figure 8: Instances of the template interpreter per node vs.

completion time (native and bytecode)

provided the communication/computation grain of the ap-

plication matches the network features.

We also run ocamlp3l applications on larger Linux PC

networks. However, the di�erences in CPUs among the PC

used make impossible to use these runs to derive suitable

performance data.

6 Related work

Many researchers are currently working on skeletons and

most of them are building some kind of parallel implemen-

tation.

In particular, Darlington's group at Imperial College in

London is actively working on skeletons. They have explored

the problems relative to implementing a skeleton program-

ming system, but the approach taken uses an imperative lan-

guage as the implementation language, at least for the code

implementing the processes running on the parallel machine

nodes [13, 1]. Bratvold [6] takes into account plain ML pro-

grams and looks for skeletons within them, compiling these

skeletons by using process networks that look like implemen-

tation templates. However, both the �nal target language

and the implementation language are imperative. Finally,

Serot [25], presents an embedding of skeletons within ocaml

that apparently looks like to be close to our work. The mes-

sage passing is performed by interfacing the MPI [22] library

with ocaml, rather than using sockets, and the skeletons

taken into account are slightly di�erent from ours. How-

ever, the important di�erence is that these skeletons cannot

be nested. On the one hand, this allows to implement the

skeletons by a simple library directly calling MPI. On the

other hand, the expressive power of the language is much

lower than the expressive power of ocamlp3l.

7 Conclusions

In this paper we showed how a skeleton parallel program-

ming model such as the one provided by p3l can be suc-

cessfully merged within the functional programming envi-

ronments such as the one provided by ocaml. In particular,

we discussed how skeletons can be embedded within ocaml



as second order functions and how modules implementing

both the sequential and the parallel skeleton semantics can

be supplied that allow users to write, functionally debug and

run in parallel skeleton applications using ocaml to express

sequential computations and data types. The whole process

preserved the strong typing properties of ocaml.

At the moment, the prototype ocamlp3l implementa-

tion runs under Linux, uses sockets to implement commu-

nication, and preliminary results show that the embedding

of skeletons within the ocaml programming environment is

feasible and e�ective. In the near future we want to adopt a

more e�cient communication layer, possibly by using MPI

[22] instead of the Unix socket library. At the same time,

we are porting the system on the ubiquitous Windows sys-

tems, for didactic purposes. We also wish to extend the set

of skeletons supported, in particular data-parallel skeletons

operating on matrices. Finally, we are currently trying to

restructure the code of ocamlp3l in such a way that new

skeletons may be easily added (at the moment the insertion

of a new skeleton requires both to modify some fundamental

data structures and to add the proper code to the process

templates library and to the parallel and sequential seman-

tics modules).
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