
A (linear) logical view of (linear) type

isomorphisms

Roberto Di Cosmo

September 25, 1997

Abstract

1 Introduction and Survey

• Cattivo cambio di ⊥,O per −◦: si perde la simmetria e cose semplici come

associativita e commutativita diventano curry e swap e le regole per le unita

si complicano enormemente (l’identita’ per il tensore diventa un pasticcio

da gestire con −◦: 1−◦A = A é ben piu complicato che ⊥OA = A. Voglio

dire, mentre 1 e’ l’identita destra e sinistra per il par, e’ solo sinistra per

−◦. Inoltre, é chiaro perché A−◦1, che é A⊥
O1, non fa 1! Da studiare la

relazione con la linearità qui.

Tuttavia, ci sono casi in cui la freccia lineare e’ comoda per catturare per

esempio la composizione de funzioni o strategie in semantica dei giochi.

• vera natura dei moltiplicativi

• legami con algebra dinamica

• problema delle unita

2 Linear isomorphisms of types

We focus in this paper on linear isomorphisms of types in multiplicative linear

logic.
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discutere il legame tra isomorphismi con A⊥
OB e A⊥, B. (ma no, é

semplicemente la lettura normale degli isos logici, ma va detto)

Definition 2.1 (Linear isomorphism) Two formulae A and B are isomorphic iff

• A and B are linearly equivalent, i.e. ⊢A⊥, B and ⊢B⊥, A

• when we compose the proofs of ⊢A⊥, B and ⊢B⊥, A using a cut rule to

obtain a proof of ⊢A⊥, A (resp. ⊢B⊥, B)), after cut elimination, we obtain

a proof reduced to the axiom ⊢A⊥, A (resp ⊢B⊥, B)

3 Simple proof nets

Proposition 3.1 (balanced hypothesis) Whenever ⊢MLLA, the number of neg

ative and positive occurrences of an atom p in A are the same.

Proof.

Definition 3.2 (simple nets) A proof net is simple if it contains only atomic axiom

links.

Definition 3.3 (ηexpansion of proof nets) For any (possibly not simple) proof

net S, there is a simple proof net with the same conclusions, obtained via a full

η − expansion of non atomic axiom links, which we call η(S).

This shows that, w.l.o.g., we can restrict our attention to simple nets.

Definition 3.4 (tree of a formula, identity simple net) A cutfree simple proof

net S proving A is actually composed of the tree of A, (named T (A)), and a

set of axiom links over atomic formulae. We call identity simple net of A the sim

ple cutfree proof net obtained by a full ηexpansion of the (generally not simple)

net A A⊥. This net is made up of T (A), de T (A⊥) and a set of axiom links

that connect atoms in T (A) with atoms in T (A⊥).
Notice that, in simple nets, the identity axiom for A is interpreted by the identity

simple net of A.

Definition 3.5 (nonambiguous formulae) We say that a formulaA is nonambiguous

if each atom in A occurs at most once positive and at most once negative. For

example, is not nonambiguous, A⊗B et A⊗A⊥ are nonambiguous, while A⊗A

is not.
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In what follows, we will focus only on nonambiguous formulae. ??????SERVE??????

credo di

no

A first remark, which is important for a simple treatment of linear isomor

phisms, is that we can focus, w.l.o.g., on witnesses of isomorphisms which are

simple proof nets.

Lemma 3.6 (Simple vs. nonsimple nets) If a (nonsimple) net S reduces via

cutelimination to S ′, then the simple net η(S) reduces to η(S ′).

Theorem 3.7 (Reduction to simple proof nets) Two formulae A and B are iso

morphic iff there are two simple nets S with conclusions A⊥, B and S ′ with

conclusions B⊥, A that when composed using a cut rule over B (resp. A) yield

after cut elimination the identity simple net of A (resp. B).

Proof. The only if direction is trivial, since a proof net represents a proof and

cut elimination in proof nets correspond to cut elimination over proofs.

For the if direction, take the two proofs giving the isomorphism and build the

associated proof nets S and S ′. These nets have as conclusions A⊥, A (resp.

B⊥, B), and we know that after composing them via cut over B (resp. A) and

performing cut elimination, one obtains the axiom net of A (resp. B) after

composition. Now take the full ηexpansions of S and S ′ as the required simple

nets: by lemma 3.6, they reduce by composition over B (resp. A) to the identity

simple net of A (resp. B).

We will show now that if two nonambiguous formulae are isomorphic then the

isomorphism can be given by means of proof nets whose structure is particularly

simple.

Definition 3.8 (biparte simple proofnets) A cutfree simple proof net is biparte

if it has exactly two conclusions A and B, and it consists of T (A), T (B) and a set

of axiom links connecting atoms of A to atoms of B, but not atoms of A between

them or atoms of B between them.

Lemma 3.9 (cuts and trees) Let S be a simple net (not a proof net) without

conclusions built out of just T (A) and T (A⊥), with no axiom link, and the cut

A A⊥. Then cutelimination on S yields as a result just a set of atomic cut links

pi p⊥
i

between atoms of A and atoms of A⊥.

Proof. This is a simple induction on the size of the net.
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We are now able to state our main results.

Theorem 3.10 (correctness) Let S be a bipartite simple proof net over A⊥ and

B, and S ′ a bipartite simple proof net over B⊥ and A. Then their composition by

cut over B reduces to the identity simple net of A (resp. their composition by cut

over A reduces to the identity simple net over B).

Definition 3.11 (formal inverse) For each bipartite simple proof net S over A⊥

and B, we can define the formal inverse S−1 of S by taking in it just the dual of

each formula of S.

Remark 3.12 This statement is false if the net is not bipartite: ((A−◦B)⊗A)−◦B
is provable, but not B−◦((A−◦B)⊗A)

Theorem 3.13 (completeness) Let S be a cutfree simple proof net with conclu

sions A⊥ abd B, and S ′ be a cutfree proof net with conclusions B⊥ et A. if their

composition by cut gives respectively the identity simple net of A and B, then S

and S ′ are biparte.

These two theorems have the following fundamental consequence.

Corollary 3.14 Two linear formulae A and B are isomorphic iff and only if there

exist a simple bipartite proof net having conclusions A⊥, B.

4 Completeness for isomorphisms in MLL

Theorem 4.1 (Isos soundness) If AC(⊗,O)⊢A = B, then A and B are linearly

isomorphic

Proof. By exhibiting the simple nets for the axioms and showing context

closure.

Theorem 4.2 (Isos completeness) IfAandB are linearly isomorphic, thenAC(⊗,O)⊢A =
B.

Proof. A simple induction on the number of tensor nodes in the associated

bipartite simple proof net, using in an essential way the correctness criterion.

If there are no tensor nodes, then the net is necessarily reduced to an atomic axiom

link (otherwise, it is easy to exhibit a disconnected correctness graph: take two
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different maximal paths: they must be distinct in at least two nodes, which are

necessarily O nodes, and then we are done).

Otherwise, at each step, remove all dangling O nodes and consider then the splitting

tensor node (that must exist due to girard’s correctness criterion). Removing this

tensor node yields, due to the correctness criterion, two disconnected proof nets,

which are still simple and bipartite, since we did not modify the axiom links. On

these two nets we can apply the induction hypothesis, and then conclude using

associativity and commutativity of O and ⊗.

5 Dynamic Algebra, GOI and invertibility

Parlare un po’ dell’invertibilità dei cammini nell’algebra: matrici 2x2 simil

permutazione con decomposizioni dell’identita’ come componenti. Vedere il mail

che mi ero spedito con i conti fatti in Maple.

6 Handling the units

We have shown above soundness and completeness result for the theory of iso

morphisms given in the introduction w.r.t. provable isomorphisms in MLL. This

essentially corresponds to isomorphisms in all *autonomous categories, which is

a superset of all Symmetric Monoidal Closed Categories (SMCC’s ) without units. check:

units in

def di *

autonomous?

Nevertheless, if we want to get an interesting result also in terms of models, and

handle then also SMCC’s in their full form, we need to be able to add units to our

treatment.

6.1 Expansions of axioms with units: identity simple nets re

visited

In the presence of the units and especially ⊥, proof nets in general get more

involved, as ⊥ forces the introduction of the notion of box for which we refer the

interested reader to [?], where a detailed explanation is presented.

For our purpose, it will suffice to recall here the proofnet formation rules for

the units:
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...
Γ

⊥Γ

Now, the expansion of an axiom can contain boxes, if the axiom formula involves

units; for example, the axiom ⊢ (A⊗)⊥, (A⊗) gets fully ηexpanded into:

6.2 Reduction of isomorhpisms to simple nets with units

6.2.1 Cuts with units: a missing case

In girard’s original paper, the only cut condition involving explicitly considered

was:

bordel

CUT
reducing to

...
Γ

There is a simple case that is also possible, though,

bordeletbordel

CUT
reducing to

...
Γ

⊥Γ

6.3 Completeness with units

7 Linear isomorphisms in linear lambda calculus

this section should already have been handled by Soloviev or somebody else to

show completeness for isomorphisms of SMCC w.r.t. linear lambda calculus.

We can try to do this through a coding into MLL with units.

Theorem 7.1 (Soundness for linear lambda calculus isomorphisms) If A and

B are arrow types (with unit) isomorphic in the linear lambda calculus, then the

translations of A and B are isomorphic in MLL (with units).
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Proof. Take the full ηexpansion of the simple translations of the lambda terms

giving the isomorphism: they provide us with the invertible proofs in MLL (with

units). check:

nonsono

cut

free le

traduzioni

Theorem 7.2 (Completeness for linear lambda calculus isomorphisms) IfAand

B are arrow types (with unit) whose translations are isomorphic in MLL (with

units), then A and B are isomorphic in the linear lambda calculus.

Proof. The linear lambda terms can be built out of the proof nets giving the

isomorphism, by linearisation.

8 Conclusions
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