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Abstract. This work focuses on software reuse for languages equipped with a module system. To retrieve

modules from a library, it is quite reasonable to use module signatures as a search key, up to a suitable notion

of signature isomorphism.

We study a formal notion of isomorphism for module signatures, which naturally extends the notion of

isomorphism for types in functional languages. Isomorphisms between module types surprisingly have non

trivial interactions with the theory of isomorphisms of the base language to which the module system is

added. We investigate the power of this notion in equating module signatures, and we study its decidability.

This work does not impose any limitative assumption on the module system as we handle type declarations

in signatures, type sharing and higher order modules.

KEYWORDS: typing and structuring systems, programming environments, module systems, ML, retrieval of

functions in function libraries.

1 Introduction

Powerful module systems such as SML’s [11, 5, 12] or Ada’s [13] are essential tools for code reuse.

Reuse requires a method to find modules. We suggest to use signatures as search keys, up to type

isomorphism, a notion which have been proven relevant as a basis for advanced library search tools in

functional libraries [16], and additionally for proposing extensions to the ML type inference mecha

nism [2].

An isomorphism is one way to identify types t and w for which any object of type t can be coerced

into an object of type w and conversely, without losing information. That is, t and w contain the same

information, organized in a different way. There is a wellknown example: the types (t×w)→ r and

t→ (w → r) are equivalent.

A highly illustrating example of Rittri’s shows how the same function can happen to have very

differentlooking types, depending on some unpredictable coding choices on the programmer’s side

(see table 1).

Language Name Type

ML of Edinburgh LCF itlist ∀X.∀Y.(X → Y → Y ) → List(X) → Y → Y

CAML list it ”

Haskell foldl ∀X.∀Y.(X → Y → X) → X → List(Y ) → X

SML of New Jersey fold ∀X.∀Y.(X × Y → Y ) → List(X) → Y → Y

The Edinburgh SML Library fold left ∀X.∀Y.(X × Y → Y ) → Y → List(X) → Y

Table 1. Different typings for the same functionality

Nevertheless, these different types turn out to be isomorphic types, which was the basis for Rittri’s

idea [15]: when looking for a function with a given type, a search tool must retrieve all the functions

with isomorphic types, and not just those with syntactically equal types. For this, we need a decidable

theory of type isomorphisms.



The study of type isomorphism for the typedλcalculus, both explicit (system F) and implicit (Core

ML) has already been solved [3], leading to complete and decidable axiomatizations of isomorphisms

and to efficient library search tools based on types. Exemples of application are library search systems

for functions in typed functional languages (like LML, Haskell and CamlLight). The CamlLight

system [17], for example, comes equipped with such a tool, camlsearch; here are some typical

examples of its use:

> camlsearch s e "string*int*int > string" /usr/local/lib/camllight/

sub_string : string > int > int > string

> camlsearch s e "’a*(’a>’b>’a)*’b list >’a" /usr/local/lib/camllight/

it_list : (’a > ’b > ’a) > ’a > ’b list > ’a

list_it : (’b > ’a > ’a) > ’b list > ’a > ’a

It is now clear that in the future, libraries will not be a flat set of functions, but rather a set of

wellorganized modules, each coming with its set of defined types and functions. In this framework, the

necessity to retrieve programs (or modules) in an independent way from the unpredictable structuring

and coding choices of the programmer, is an even greater challenge. We show below an example of

two functors that we intuitively want to identify.

module UnifyCurry :

functor (t:TERMS)

functor (s:SUBSTITUTION with s.termtype = t.termtype):

sig ... unify: t.termtype > t.termtype > s.substtype end

module UnifyUnCurry :

functor (sig module t:TERMS

module s:SUBSTITUTION with s.termtype = t.termtype end):

sig ... findunifier: t.termtype * t.termtype > s.substtype end

Table 2. Different typings and structuring for the same functionalities

The goal of the present work is to tackle this challenge, studying in a precise way how to combine

SMLlike modules and isomorphisms of types. We develop a notion of equivalence of module types

(also called signatures in SML) that parallels the equivalence of types induced by type isomorphisms.

This equivalence notion can be applied to the retrieval of software components in libraries of modules.

The key idea is to export the analogy between simple types with products and module types [1]

to derive from each of the type isomorphisms for coreML a similar module type equivalence. These

equivalences capture structural modifications of modules that are significantly more complex than

a simple reordering of components. We strive to give a general solution, handling explicitly type

declarations in signatures, type sharing specifications and higherorder modules. We have chosen to

work with Leroy’s proposal for module systems [6], which is now implemented in the Objective Caml

language (available as [10]). to be quite easier to work with than the original SML module system.

Let us finally mention that all the work done here can be immediately applied to module systems

like ADA’s packages and generics.

The remainder of this paper is organized as follows. In the next section we briefly recall the essential

features of Leroy’s module system. In section 3, we informally define the equivalence between module

signatures, which is formalized in section 4. In section 5, we discuss the decidability of our notion of

equivalence. Finally, we present conclusions and directions for future research.



2 The module system

Our signature language is a subset of the manifest module language developed by X. Leroy [6, 9].

This language is sintactically similar to SML modules [12, 7]. The module language described has

two base constructs: basic modules (structures), and functions from modules to modules (functors).

Signatures are the types of modules (structure signatures or functor signatures). Structure signatures

are sequences of type specifications. Functor signatures are actually dependent types: the type of a

functor body may refer to a type identifier x.t coming from the functor argument x. The single keyword

module introduces both structure and functor specifications. In the grammar of figure 1, v ranges

over value identifiers, t over type identifiers and x over module names.

Module types:

S ::= sig D end structure type

| functor (x : S)S functor dependent type

Structure signature body:

D ::= ǫ | C;D

Signature components:

C ::= val ve : τ value specification

| type te abstract type specification

| type te = τ manifest type specification

| module xe : S module specification

Type expressions:

τ ::= t type identifier

| p.t type path

| τ → τ function type

| τ ⋆ τ product type

Structure paths:

p ::= x | p.x

Extended identifiers:

ide ::= id | p.id

Fig. 1. The signature language

The structure path m.x denotes the module component x of structure m. The path p.x refers to the

component x from an arbitrarily nested structure given by path p. Identifiers in structure paths must

correspond to structure identifiers.

Type paths (p.t) and value paths (p.v) provide access to type and value identifiers from nested

structures. Two occurrences of the path p.t always correspond to the same type. On the other hand,

manifest types can be equivalent even when coming from different type paths: they only have to be

specified with (provably) equivalent type annotations.

We extend identifiers to paths: ve, te and xe are extended identifiers for values, types and modules.

Extended identifiers cannot appear in a programmer defined signature. They are used during equiv

alence checking to rename identifiers bound in flattened signatures. We justify their use, and show

examples, later in section 3.2. The syntactic class ide introduces extended identifiers for the class id

ranging on value, types and module identifiers.

Modules à la SML can be seen as a set of modular constructs (the module language) built on top of

a staticallytyped language (the base language). To keep this paper simple, we restrict the set of type

constructors of the base language to products and functions.



3 Defining module isomorphism

Isomorphism between two types can be formalized using converters, that is, functions to coerce any

object of one type into an object of the other type, as long as there is no loss of information:

Definition 1 (Isomorphic types) Two types A and B are isomorphic iff there exist conversion func

tions f : B → A and f ′ : A→ B such that

∀M : A, f(f ′ M) = M : A and ∀N : B, f ′(f N) = N : B.

Analogously, we give a semantic definition of signature isomorphism, as follows:

Definition 2 (Isomorphic module signatures) Two module signatures S and S′ are isomorphic iff

there exist conversion functors f : S → S′ and f ′ : S′ → S such that

∀s′ : S′, f(f ′ s′) = s′ : S′ and ∀s : S, f ′(f s) = s : S.

Characterizing isomorphisms of signatures is more complex than for simple types: we have to deal

not with one language but two, the base language and the module language. In the remainder of this

section, we take as starting point the results for isomorphism on the base types [2] and try to apply it

to modules.

3.1 A first naive approximation

A simple analogy can be made between the SML module language and a typed functional language:

structures correspond to basic values, functors to functions and signatures to types. Moreover, as

structures are sequences of component declarations including other modules, they can be seen as

named products of modules, values and types [1].

Thus, it is tempting to adapt the known isomorphism rules to module types built with named

products and arrows, and then compare signatures componentwise using the already known results on

isomorphism for base types [3]. Here is an example of two signatures that can be shown isomorphic

in this way:

sig sig

val filter: val filter:

(’a>bool)>’a list>’a list (’a list)*(’a>bool)>’a list

val list_it: val list_it:

(’a>’b>’a)>’a>’b list>’a (’a*’b > ’b)>’a list>’b>’b

end end

Unfortunately, this simple technique only discovers few isomorphisms: essentially those on signa

tures having identical skeletons, including the same number and names of components (modulo some

limited permutations) and without type declarations.

3.2 Equivalence via signature transformations

Our approach of equivalence relies on a simple idea already used for base language types: we consider

that two signatures are equivalent if they can be transformed (preserving equivalence) into componen

twise isomorphic signatures.

It is easy to associate to each one of these transformations a corresponding pair of conversion

functors establishing an isomorphism. In this section we discuss informally the transformations and

equivalences over signatures we aim to capture in a formal framework.

Names of components Few programmers choose exactly the same identifiers for module components

with identical semantics. During equivalence verification we consider possible mismatch of names

between components with isomorphic types.



Interaction between base and module types Structures in the module language can be seen as
named products of simple types. When we do not impose the same names on typeisomorphic
components, we can freely mix products from the module language (i.e, sequences of components)
and products from the base language. The signatures below are semantically equivalent:

sig val a: int*bool end

sig val a1: int; val a2: bool end

A similar equivalence arises for type declarations. These two equivalences lead to the following

transformations: we decompose value specifications, and manifest type specifications, that are

annotated by a product type, into as many value or type specifications as there are components in

the product type.

Structural equivalence Structures declare components (values, types, or modules), which can be

organized in many different ways. We consider two kinds of equivalences between structurally

different signatures. First, components with isomorphic types can be declared in different orders;

second, they can be declared at different levels of substructure nesting. Thus, during equivalence

checking we flatten all inner structures in signatures before comparing them componentwise.

Nevertheless, flattening of structure signatures must be performed carefully in order to preserve
type dependencies over type identifiers bound within them. In the signature below, the type of b
depends on the type t bound in the substructure x.

sig

module x : sig type t = int; val a: t end

type t = bool; val b: x.t

end

To flatten the inner module x, a natural solution is to lift all its declarations:

sig type t = int; val a: t; type t = bool; val b: x.t end

However, the path x.t in the type of b does not correspond any more to a bound type in this

signature. To be correct, this transformation must also rename all references outside x of names

bound within x. Yet this renaming can produce name clashes, and even change typing. Consider

below the result of renaming the type name x.t into t: the type of b changes from int into

bool. This simplistic transformation is erroneous:

sig type t = int; val a: t; type t = bool; val b: t end

To avoid this problem, we extend the syntax of identifiers to paths, and while lifting declarations
from x, we rename every occurrence (even bounding ones) of any component u bound within x
into the path x.u. The signature above is transformed into:

sig type x.t = int; val x.a: x.t; type t = bool; val b: x.t end

Notice that this renaming remains local to x: the specification type t = int is modified into

type x.t = int, and thus, any reference to t outside x remains (correct and) unchanged.

Curried functors In the base type language the following equivalence holds: s1 → s2 → s ≡ s1×
s2 → s. Analogously, we consider that functor signatures are equivalent if their (curried) arguments
put together (as in products) are componentwise isomorphic. For instance, consider the functors f
and g below:

module f : functor(x: S1) functor(y: S2) S

module g : functor(x: S3) S

We consider that they are equivalent if transforming functor f into



module f ’ : functor (z: sig module x:S1; module y: S2 end) S

ends up in a functor f’ such that its argument z has a signature componentwise isomorphic to S.

This amounts to perform a transformation on curried functors analogous to that used for simple

types: put in products all arguments of a functor. In module types, this corresponds to using a single

argument having a substructure for each one of the functor arguments. Combined with flattening,

this transformation can be used to check equivalence in presence of curried functors.

Equivalence of sharing specifications Type sharing specifications are used in functor signatures
to express compatibility between type components of different arguments. Each functor below
specifies sharing on two types t and w within theirs arguments.

signature S1 = sig type t=int end; signature S2 = sig type w=int end

module f : functor(x: S1) functor (y: sig type w = x.t end) S

module g : functor(y: S2) functor (x: sig type t = y.w end) S

We consider two functors equivalent if, when they specify sharing, the sharing specified is exactly

the same on types equivalent across the functors. In this example, beacause x.t and y.w in f and

y.w and x.t in g are all specified as int, they can be considered as equivalent across functors.

Moreover, both functors specify exactly the same sharing, namely, the equivalence of the type

components x.t and y.w.

Sharing is specified using manifest type specifications, and manifest type specifications induce

an equivalence relation on type identifiers and congruences on type expressions. Thus, sharing

specifications do not need a particular transformation during equivalence checking: they are simply

taken in account as manifest type specifications in signatures. Thus, the two functor above can

be proved equivalent after transforming them using the usual rules on functor equivalence (in

particular those on curried funtors).

4 An axiomatization of signature isomorphism

We formalize the ideas presented above, by presenting a set of equivalence rules for checking signature

isomorphism. The main goal of these rules is to say whether a set of equivalences E between two

signatures S1 and S2 can be used to establish an isomorphism between them. This will be written:

E ⊢ S1 ≡ S2

Module signatures can contain specifications for type components that can be referred to later on in

the signature, and this type information may be necessary to determine equivalences for the remainder

of the signature. Thus, our equivalence rules check whether two signatures are isomorphic both with

respect to an equivalence type context E, which records equalities on type identifiers declared in the

two signatures checked for isomorphisms, and with respect to two local contexts L and R, containing

each the type equivalence information local to the left or right signature. Our rule system uses the

following equivalence judgements:

E,L,R ⊢ S ≡ S′ signature iso E ⊢ τ isobase σ base type iso

E,L,R ⊢ τ iso τ ′ cross base type iso A ⊢ τ ≈ τ ′ local base type equiv

We classify these judgements into two kinds: those stating equivalence between types of two dif

ferent signatures (either between type components, or between whole signatures), and those stating

equivalence between (base language) types local to one of the compared signatures. We call the for

mer cross equivalences and the latter local equivalences. Equivalence contexts are distinguished in a

similar way: the equivalence context E is a cross context, while L (for left) and R (for right) are local

contexts. The context A above stands for any of these local contexts.

Both cross and local equivalences are necessary to determine isomorphism between signatures, as
shown in the example below:



signature S = sig type t = int; val a: t * t end

signature S’ = sig type w = int; val p : int * w end

In order to prove S equivalent to S’, we must show a cross equivalence between the type identifiers

t and w, and between the types t * t and int * w. The former is immediate, but for the latter we

need to use type information local to each signature, namely, that t is specified as int in S, and w

as int in S’. Thus, to show equivalence of components a:t*t and p:int*w, the cross context E

contains {type t = w}, and the local contexts are L = (type t = int) and R = (type w = int).

In the following rules, we need an auxiliary normalisation function norm associating to each

signature S a signature S′ (its normal form), as detailed in figure 7. Finally, we will write E ⊢
S1 ≡ S2 for E, ∅, ∅ ⊢ S1 ≡ S2.

4.1 The isomorphism rules

We give a formal axiomatic presentation of our rules for checking signature isomorphism. For this,

we assume given a cross context E, containing already the appropriate cross equations to check the

equivalence. We then use the various transformations discussed above to test equivalence with respect

to E. Due to the symmetry of equivalence judgments, we will often present only the rule for the left

case, with a name ending with a L suffix. We will also often talk generically about a rule, with no

suffix, when meaning both the right and the left rule.

The rules in figure 2 compare componentwise two signatures, reordering and renaming components.

Rule (Compfun) compares functor components. An analogous rule for structure components is

subsumed by the rule (Flatten), that also captures flattening as presented in section 3.2.

Rules in figure 3 deal with interactions between baselanguage product types and products implicit

in sequences of signature components. Whenever we can use baselanguage isomorphisms to show

that a component has a product type, we split it in two components. The rules in figure 4 show how

the isomorphisms for the base language can be lifted to isomorphisms of the types that appear in

the module signatures (these types can indeed contain path expressions, that are not part of the base

language).

Rules in figure 5 account for the equivalence relation on types induced by manifest type specifications

local to each compared signature [6].

Notation 3 (Fully substituted form) The rules in figure 5 can be seen as a function φ(A, τ) = τ ′,

that given a type τ and an environment A, performs all possible substitution of identifiers from A in τ .

Rules in figure 6 deal with functor equivalences. These rules use normalization, which is only needed to

flatten functor arguments before checking equivalence of bodies. Rule (Functordecompose) compares

two functors by comparing argument signatures and result signatures. In this rule, E contains the cross

type equations (for type identifiers coming from both functor arguments) needed to verify equivalence

on functor bodies. Here, normalization of arguments guarantees, first, that the correct type paths are

held in E; and second, that type declarations in arguments are flattened. These are necessary steps

to apply rule (Eqtypepath) on functor arguments when used as hypothesis to derive equivalences of

bodies. Rules (Functoruncurry) deal with curried functors as explained in section 3.2.

Semantic soundness We can now show that all our equivalence rules are semantically sound.

Proposition 4 Semantic soundness. Assume thatS,S′ are module signatures such thatE ⊢ S ≡ S′.

Then, there exist conversion functors f : S → S′ and f ′ : S′ → S such that:

∀s′ : S′, f(f ′ s′) = s′ and ∀s : S, f ′(f s) = s.

Proof. To each of the equivalence rules one can associate a pair of conversion functors, as hinted

in the informal discussion. Then one can build the conversion functors associated to a full proof by

composing the simpler ones associated to each equivalence used in the derivation.



5 Deciding module isomorphism

From the definition in the previous section it is not really evident that, given a cross context E, the

property E ⊢ S1 ≡ S2 is decidable, as not all the rules transform a decision problem into a smaller

one: notably, the Mix rules replace one component with two other ones, while splitting products.

Indeed, decidability depends in an essential way on the properties of isomorphisms of the base

language. Consider the rule MixtypeL: to prove E,L,R ⊢ S1; type t = τ ;S ≡ S′ one has

first to establish E,L; type t = t1 ∗ t2, R ⊢ S1; type t1 = τ1; type t2 = τ2;S ≡ S′ where

L ⊢ τ ≈ τ1 ∗ τ2, i.e. L ⊢ φ(L, τ) isobase τ1 ∗ τ2.

This rule reminds us, like all the Comp rules, that if isomorphism in the base language is not

decidable, neither can be isomorphism at the module level.

But it also tells us that if we do not have enough information on τ1 and τ2, we are in the presence of

a potential cause of nontermination: if the equivalence classes of the base language isomorphism are

infinite (this is the case for second order isomorphisms, which are nevertheless decidable, as shown

in [4]), or if either one of τ1 or τ2 is not strictly smaller, according to an appropriate measure, than

τ (and this is the case in the presence of recursive types), then there may be an infinite number of

derivations with the same root and the bruteforce search for a legal derivation may not terminate.

This fact highlights once more the tight relationship that exists between isomorphisms at the base

language level, and isomorphisms of modules. If the base language isomorphisms are decidable in a

sophisticated way that can cope with potentially infinite equivalence classes of isomorphic types, then

the module isomorphisms will probably also be decidable, but by means of a specialized algorithm,

which is not simply built on top of the existing decision procedure for the base language.

Nevertheless, here are some general necessary conditions for decidability.

Proposition 5 Decidability w.r.t. E. Assume the following conditions:

– the equivalence classes of the base language isomorphism are finite (or pseudofinite, i.e., finite

up to alpha renaming of bound type variables as in ML and F), and

– there is a well founded measure m such that if τ ≡ τ1 ∗ τ2, then m(τ) > m(τi), i = 1, 2.

Then, signature isomorphism w.r.t. a given E is decidable.

Proof. (sketch) It is enough to show that the bruteforce construction of all proof derivations, given

E, terminates.

The first condition ensures that at any step only a finite number of subproblems is generated (the

trick for handling pseudofiniteness is to consider only isomorphic types with the same bound variables

in the Mix rule, and only renaming of bound variables to already existing bound variables in the Comp

rules). The second condition ensures that only a finite number of Mix rules can be used in a derivation

(as each application of the rule decreases the overall measure of all types on which Mix can be applied).

This is sufficient, as all other rules strictly decrease the size of the subproblems.

Remark. The conditions for termination are not as restrictive as they might seem: for example all

theories of isomorphisms found in [3] satisfy them.

Now that we know how to check whether a given set of cross equivalences E is enough to derive

the equivalence of the two signatures, what about finding all such E’s?

Proposition 6 Decidability. If signature isomorphism w.r.t. E is decidable, then so is the problem of

finding all E such that E ⊢ S1 ≡ S2

Proof. The equations in E that are relevant for signature equivalence are only those involving the

possible paths in the two given signatures. Hence we can use decidability of signature isomorphism

checking w.r.t. a given E to build an algorithm for isomorphism checking: just try all the relevant E’s.

It is possible to give a more refined algorithm to find all possible valid E for a given specific base

language.



6 Conclusions and future work

We have presented a notion of module isomorphism that parallels the semantic notion of type iso

morphism. This notion is at the same time conceptually simpler and technically richer than previous

proposals (for example [18]).

We showed that, when dealing with module interconvertibility, one can no longer separate the

module language from the base language, as long as the base language has types such as products

or records, and that this fact can have important consequences on the decidability of the module

isomorphisms: this is quite reasonable, and nevertheless essentially new.

We also showed how, using Leroy’s formalism, sharing and higher order modules can fit nicely

and naturally in our framework: the system presented here does not have the usual restrictions to

first order modules, and does not sweep sharing (one of the most important features in this kind of

modules) under the carpet. Nevertheless, like Leroy’s calculus [6], our system does not account for

the full transparency problem of higherorder functors. A solution would be to adapt our equivalence

system to Leroy’s applicative functors semantics [8], but this is still under investigation. Proceeding

from here, we can now address some further problems, both on the practical and theoretical side:

Module matching up to isomorphism There are two orthogonal problems when reusing code from

a library: one is the different representations of the same functionality (captured by our notion of

isomorphism); the other is how to combine several pieces from the library to build the functionality

that we need. While our work focuses on the first problem, there has been work dealing with the

second: [14], for example, studies a language with higherorder parametric module signatures, and

shows how to translate a library of higher order modules into a logic program. The execution of this

program generates all possible compositions of modules that result in a module containing at least all

components specified in the query. This approach, based on an extension of signature matching does

not account for the problem of equivalence of representations, which is central to our work, nor for

type sharing in signatures. Nevertheless, it would be interesting to combine the two approaches: this

would require an axiomatization of subsumption up to isomorphism.

Semantic soundness and completeness An important feature of previous work on isomorphisms of

types is the existence of a soundness and completeness proof for the isomorphism inference system

(see [3] for a survey): this guarantees that only relevant information is retrieved, and that nothing is

missed during a search. While semantic soundness for our set of rules can be shown easily using the

conversion functors associated to each inference rule, semantic completeness is a much more difficult

task: even for the base language types for the systems presented in [3], the proof relies on a very

complex analysis of a special class of typed λterms. The most promising approach seems to try to

exploit the analogy between module types and base language types to recover the completeness result

for modules from completeness on base language type isomorphisms.
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(Paren)

E,L,R ⊢ D ≡ D′

E,L,R ⊢ sig D end ≡ sig D′ end

(Compvalue)

E,L,R ⊢ τ iso τ ′ E,L,R ⊢ D1;D2 ≡ D′

1
;D′

2

E,L,R ⊢ D1; val a : τ ;D2 ≡ D′

1
; val b : τ ′;D′

2

(Comptype)

E,L,R ⊢ τ iso τ ′ E ⊇ {type t = r}
E,L; type t = τ, R; type r = τ ′ ⊢ D1;D2 ≡ D′

1
;D′

2

E,L,R ⊢ D1; type t = τ ;D2 ≡ D′

1
; type r = τ ′;D′

2

(Compabstype)

E,L,R ⊢ D1;D2 ≡ D′

1
;D′

2
E ⊇ {type t = r}

E,L,R ⊢ D1; type t;D2 ≡ D′

1
; type r;D′

2

(Compfun)

E,L,R ⊢ F ≡ F ′ F, F ′ functor signatures

E,L,R ⊢ D1;D2 ≡ D′

1
;D′

2

E,L,R ⊢ D1; module f : F ;D2 ≡ D′

1
; module f ′ : F ′;D′

2

(FlattenL)

E,L,R ⊢ D1;D{n← x.n | n ∈ BV (D)};D2 ≡ S

E,L,R ⊢ D1; module x : sig D end;D2 ≡ S

Fig. 2. Structure compatibility rules

(MixvalueL)

E,L,R ⊢ D1; val a1 : τ1; val a2 : τ2;D2 ≡ S L ⊢ τ ≈ τ1 ∗ τ2

E,L,R ⊢ D1; val a : τ ;D2 ≡ S

(MixtypeL)

E,L; type t = t1 ∗ t2, R ⊢ D1; type t1 = τ1; type t2 = τ2;D2 ≡ S

L ⊢ τ ≈ τ1 ∗ τ2

E,L,R ⊢ D1; type t = τ ;D2 ≡ S

Fig. 3. Mix products rules



(IsoE)

E ∪ {type t = w} ⊢ t isobase w

(IsoELR)

L ⊢ τ ≈ τ ′ R ⊢ σ ≈ σ′ E ⊢ τ ′ isobase σ
′

E,L,R ⊢ τ iso σ

Fig. 4. Base language isomorphisms

(Eqtype)

A; type t = τ ⊢ t ≈ τ

(Eqtypepath)

A; module p : sig D1; type t = τ ;D2 end ⊢ p.t ≈ τ{x← p.x | x ∈ BV (p)}

(Subst)

A ⊢ τ ≈ τ ′ A ⊢ C[τ ′] ≈ σ

A ⊢ C[τ ] ≈ σ

Fig. 5. Type equivalence rules

(Functordecompose)

N1 = norm(S1) N2 = norm(S2)
E,L,R ⊢ module x : N1 ≡ module y : N2

E,L; module x : N1, R; module y : N2 ⊢ S′

1
≡ S′

2

E,L,R ⊢ functor(x : S1)S
′

1
≡ functor(y : S2)S

′

2

(FunctoruncurryL)

E,L,R ⊢ functor(z : sig module x : S1; module y : S2 end)
S3{x.n← z.x.n | n ∈ BV (x)}{y.n← z.y.n | n ∈ BV (y)} ≡ S

E,L,R ⊢ functor(x : S1)functor(y : S2)S3 ≡ S

Fig. 6. Functor equivalence rules



A The normalization rules

We present here the definition of the norm function that associates to a module signature its normal

form (essentially flattening signatures using (Flatten)).

norm(val a : τ ;D) −→ val a : τ ; norm(D)

norm(type t;D) −→ type t; norm(D)

norm(type t = τ ;D) −→ type t = τ ; norm(D)

norm(module x : sig D end;D′) −→ norm(D{n← x.n | n ∈ BV (D)};D′)

norm(module f : F ;D) −→ module f : F ; norm(D)

if F is a functor signature

Fig. 7. The rewriting rules for normalization
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