
Rewriting with Extensional Polymorphic
λ-calculus

Roberto Di Cosmo1 and Delia Kesner2

1 LIENS (CNRS) - DMI
Ecole Normale Supérieure

45, Rue d’Ulm
75005 Paris - France, E-mail: roberto@dicosmo.org

2 CNRS and LRI
Bât 490, Université de Paris-Sud

91405 ORSAY Cedex, France, E-mail: kesner@lri.lri.fr

Abstract. We provide a confluent and strongly normalizing rewriting
system, based on expansion rules, for the extensional second order typed
lambda calculus with product and unit types: this system corresponds to
the Intuitionistic Positive Calculus with implication, conjunction, quan-
tification over proposition and the constant True. This result is an im-
portant step towards a new theory of reduction based on expansion rules,
and gives a natural interpretation to the notion of second order η-long
normal forms used in higher order resolution and unification, that are
here just the normal forms of our reduction system.

1 Introduction

Typed lambda calculus provides a convenient framework for studying functional
programming and offers a natural formalism to deal with proofs in intuitionistic
logic. It comes traditionally equipped with a fundamental computational mech-
anism, which is the β equality (λx.M)N = M [N/x], and with a minimal tool for
reasoning about programs, which is the η extensional equality λx.Mx = M . This
basic calculus can then be extended by adding further types, like products, unit
and second order types, each coming with its own computational mechanism
and/or its extensional equalities.

This work provides a confluent and stronlgy normalizing rewriting system
for second order lambda calculus equipped with extensionality axioms for the
products and for the arrow type, no longer oriented as contractive rules, but, ac-
cording to the now growing practice [Aka93, Dou93, DCK94b, Cub92, DCK94a,
DCP95, JG92], as expansive rewriting rules.

Using expansive rewrite rules, in a controlled fashion, allows us to obtain a
simple canonical system that can be used to decide equality, has the second order
Huet’s βη-long normal forms as normal forms and is naturally compatible with
rules that break confluence when added to systems with contractive rules for
extensional equalities. This is the case, for example, of the special unit type T
and the rule M : T −→ ∗ : T that one needs to define the extensional first order
lambda calculus associated to Cartesian Closed Categories. Another example is

the extensional first order lambda calculus enriched with a confluent algebraic
rewriting system, where confluence is also broken by contractive rules [DCK94a].

As has been noticed before, the expansive interpretation of extensional rules
is not new, but has been neglected for a long time, so that the theory of lambda
calculus with expansion rules is far from being fully developed: even for η-
contraction, that has been extensively studied for a long time, a satisfactory
treatment has been provided only recently [Geu92].

A first positive result for polymorphic systems is presented in [DCP95], but
just for the first order expansive η rule: unfortunately, the proof technique used
there, which is based essentially on η postponement, does not extend to poly-
morphic η expansion nor to expansive surjective pairing.

Here we provide a proof of confluence and normalization for the full poly-
morphic system with the extensionality of arrow, product and universal types
turned into expansive rules. Since the rewriting relation with controlled expan-
sive rules is not a congruence and is not stable by substitution, we cannot use
the traditional reducibility proofs, that strongly rely on these properties.

Our proof is based on a modification of Girard’s reducibility candidates, as
first suggested for the first order calculus in [Jay92], that requires some careful
reordering of the traditional lemmas in Girard’s proof, but works homogeneously
for products as well as arrow and polymorphic types. A related approach has
been independently taken in [Gha95] for the fragment without products and ter-
minal object: there a different modification of reducibility is introduced, which
seems very promising.

It is worth noting that the expansive interpretation of extensional equalities
does not fit the various higher order schemes proposed for example in [Klo80,
JO91, Nip90], as those schemes do not allow the left hand side of the reduction
rules to be a single higher-order variable.

We also present a simple argument that allows to add in a fully modular way
the special rule for the unit type to any rewriting system, preserving normaliza-
tion.

Overall, this provides us with first canonical rewriting system for the full
polymorphic extension of the first order lambda calculus associated to Carte-
sian Closed Categories, an important step towards a full theory of expansive
extensionality.

1.1 Brief Survey

Several proof techniques have been developed to tackle the expansionary inter-
pretation of the extensional equalities, and show that it yields a confluent and
normalizing system in the first order case. One idea is to try to separate the
expansion rules from the rest of the reduction, and then try to show some kind
of modularity of the reduction systems. In [Aka93] this is done by means of the
following property:

Lemma1. Let S and R be confluent and strongly normalizing reductions, s.t.

∀M,N (M
R
=⇒ N) implies (MS R

=⇒+NS)

where MS is the S normal form of M , then S ∪R is also confluent and strongly
normalizing.

The lemma applies to S taken as the expansions and R the usual reductions.
In [DCK94b], we reduced confluence and strong normalization of the full expan-
sionary system to that of the traditional one without expansions using another
modular technique based on a translation.

A different non-modular approach is taken in [JG92] and [Dou93], where
the proofs of strong normalization are based on an extension of the traditional
techniques of reducibility and allow to handle also the peculiarity of the ex-
pansion rules. But that is not all, since one is left to prove weak confluence
separately, which is not an easy task in the presence of expansion rules, as the
rewrite relation is not a congruence (see [DCK94b] for details).

An even different technique is used in [Cub92], where confluence is shown
by a careful study of the residuals in the reduction.

Finally, in [DCP95], one finds a simple general lemma, that appears also
in [Ges90], and that is today the most satisfactory tool to handle the addition
of expansion rules to first order systems, since it is fully modular and extremely
easy to apply.

Lemma2. Let 〈A, R, S〉 be an Abstract Reduction System, where R-reduction
is strongly normalizing. Let the following commutation hold

∀a, b, c, d ∈ A

a c

b d

R //

S

��

S
��

�

�

�

��

+
R //_ _ _ //

Then S∗ and R+ commute, so, in particular, S∗ and R∗ commute.

Since the union of two confluent reductions that commute is confluent, this
lemma gives an easy way of proving confluence modularly: in particular, if we
take expansive η and SP as S, and the rest of the system as R, all first order
systems cited above satisfy the lemma, so confluence comes up immediately
from the separate confluence of the expansions alone and of the non expansive
subsystems.

As for normalization, if R preserves S normal forms, and S and R are both
confluent and normalizing, it is easy to see that commutation also entails the
hypothesis of Akama’s lemma, so also normalization comes up modularly. This
is the case in all first order systems: since the type of any subterm do not evolve
during reduction, expansive normal forms are preserved, so one gets immediately
strong normalization for the full system.

For these reasons, we can consider that the treatment of expansive rules in
first order systems is nowadays fully satisfactroy. Unfortunately, in the presence
of second order quantification, the type of a subterm can evolve during eval-
uation, and this fact allows us to build very simple examples suggesting that
the modular approaches [Aka93, DCK94b, DCP95] cannot be satisfactorily ex-
tended to the second order case, and we have to go back and have a better look
at reducibility candidates.

Expansions and polymorphism are not modular The following simple ex-
ample shows that we cannot use the modular techniques developed up to now
to separate the complexities introduced by expansion rules and polymorphic
typing.

Example 1. LetM = (ΛX.(x[X → X])(λy : X.y))[A×B] where x : ∀Z.(Z → A)
and A and B are base types. Then, the term M is a normal form w.r.t expansion
rules, but its immediate β2 reduct is not:

M ′ = (x[A×B → A×B])(λy : A×B.y)

In fact, M ′ reduces to the term

M ′′ = (x[A×B → A×B])(λy : A×B.〈π1(y), π2(y)〉)

Now, there is no way to reduce M to M ′′ without using expansions, so the
hypothesis of lemma 1 are not satisfied, and then also lemma 2 is no good, since
it relies on Akama’s lemma for normalization.

This same example can be used to show how the use of expansor terms
of [DCK94b] is neither viable.

Our approach Since the modular techniques are not viable, we focused on the
reducibility predicates defined in [JG92] for the first order calculi with expansion
rules, and we adapt the strong normalization proof to handle both second order
quantification and expansion rules, by a careful reorganisation of the traditional
arguments.

One fundamental difference between the proof for the simply typed and the
proof for polymorphic lambda calculus is that one does not work with just one
reducibility candidate, but with all reducibility candidates at once. This requires
to deal with many subtle points in the second order case that do not appear in
the first order case.

We define the calculus in section 2 and we show weak confluence of the full
reduction system in section 3. We then give the proof of strong normalization in
section 4, add the Top type in section 5 and we finally conclude with some ideas
for further work.

2 The Calculus

We consider a denumerable set of atomic types and a denumerable set of type
variables. The set of types of our calculus can be defined by the following gram-
mar:

A ::= ι | X | A×A | A → A | ∀X.A

where ι ranges over the set of atomic types and X over the set of type vari-
ables.

Variables are typed by the following axiom:

x1 : A1, . . . , xn : An ⊢ xi : Ai (1 ≤ i ≤ n)

where the xj ’s are pairwise distinct.

And terms are typed by the following rules:

Γ, x : A ⊢ M : B

Γ ⊢ λx : A.M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ (MN) : B

Γ ⊢ M1 : A1 Γ ⊢ M2 : A2

Γ ⊢ 〈M1,M2〉 : A1 ×A2

Γ ⊢ M : B1 ×B2

Γ ⊢ π1(M) : B1

Γ ⊢ M : B1 ×B2

Γ ⊢ π2(M) : B2

Γ ⊢ M : A X not free in the type of any x ∈ FV (M)

Γ ⊢ ΛX.M : ∀X.A

Γ ⊢ M : ∀X.A

Γ ⊢ M [B] : A[B/X]

We write M : A is M has type A under some context Γ . The set of free
variables of a term M , denoted FV (M) is defined as usual. If M is a term and
θ a substitution, Mθ is the term M where each x ∈ FV (M) is replaced by θ(x).
Substitutions are typed, in the sense that the substituted variable and term must
have the same type.

We identify terms up to α-conversion, i.e. renaming of bound variables. The
reduction rules are the following (we refer the interested reader to [DCK94b] for
a discussion of the restrictions on the expansion rules):

(β) (λx : A.M)N
β
−→ M [N/x]

(β2) (ΛX.M)[A]
β2

−→ M [A/X]

(πi) πi〈M1,M2〉
πi−→ Mi, for i = 1, 2

(δ) M
δ
−→ 〈π1(M), π2(M)〉, if

{

M : A×B
M is not a pair

(η) M
η
−→ λx : A.Mx, if







x 6∈ FV (M)
M : A → C
M is not a λ− abstraction

(η2) M
η2

−→ ΛX.M [X], if















X is not free in M
X is not free in the type of any free variable of M
M : ∀Y.A
M is not a Λ− abstraction

The one-step reduction relation between terms, denoted =⇒ , is defined as
the closure of the reduction rules β, β2, η, η2, π1, π2, δ for all the contexts except
in the application and projection cases, i.e:

– If M =⇒ M ′, then MN =⇒ M ′N except in the case M
η
−→ M ′

– If M =⇒ M ′, then M [A] =⇒ M ′[A] except in the case M
η2

−→ M ′

– If M =⇒ M ′, then πi(M) =⇒ πi(M
′) except in the case M

δ
−→ M ′

Notation 3 The transitive and the reflexive transitive closure of =⇒ are noted
=⇒+ and =⇒∗ respectively.

We will use some standard notions from the theory of rewriting system, such
as redex, normal form, confluence, weak confluence and strong normalization.
See [Bar84] for references.

3 Weak Confluence

Since we already know that the first order fragment of the calculus is conflu-
ent [Aka93, DCK94b, JG92, Dou93, Cub92], this task is greatly simplified: we
are left to examine only the critical pairs that arise from the use of the second
order rules β2 and η2.

We first prove a substitution lemma for types :

Lemma4. If Q =⇒ Q′, then Q[A/X] =⇒ Q′[A/X]

Proof. By a simple case analysis.

Then, we can proceed to prove the following

Lemma5 Critical Pairs. If M −→ M1 and M =⇒ M2, there is M3 such that
M1 =⇒∗ M3 and M2 =⇒∗ M3.

Proof. We analyse only the cases where M −→ M1 is an
η2

−→ or
β2

=⇒ , all the
other cases can be found in [DCK94b].

1.

(ΛX.Q)[A] =========⇒ (ΛX.Q′)[A]

β2

∨

β2

∨
Q[A/X] ======

by lemma 4
=====⇒ Q′[A/X]

2.

(ΛX.Q)[A]
η
> λy : B.((ΛX.Q)[A])y

β2

∨

β2

∨
Q[A/X] λy : B.(Q[A/X])y

If Q[A/X] is not a λ-abstraction, then Q[A/X]
η
−→ λy : B.(Q[A/X])y, oth-

erwise Q[A/X] = λz.N and we have

λy : B.(λz.N)y
β
−→ λy : B.(N [y/z]) =α λz.N = Q[A/X]

3.

(ΛX.Q)[A]
δ
> 〈π1((ΛX.Q)[A]), π2((ΛX.Q)[A])〉

β2

∨

β2

∨
〈π1(Q[A/X]), π2((ΛX.Q)[A])〉

β2

∨
Q[A/X] 〈π1(Q[A/X]), π2(Q[A/X])〉

If Q[A/X] is not a pair, then Q[A/X]
δ
−→ 〈π1(Q[A/X]), π2(Q[A/X])〉, oth-

erwise Q[A/X] = 〈N1, N2〉 and we have

〈π1(〈N1, N2〉), π2(〈N1, N2〉)〉
π1−→ 〈N1, π2(〈N1, N2〉)〉

π2−→ 〈N1, N2〉 = Q[A/X]

4.

(ΛX.Q)[A]
η2
> ΛY.((ΛX.Q)[A])[Y]

β2

∨

β2

∨
Q[A/X] ΛY.(Q[A/X])[Y]

If Q[A/X] is not a Λ-abstraction, then Q[A/X]
η2

−→ ΛY.(Q[A/X])[Y], oth-
erwise Q[A/X] = ΛZ.N and we have

ΛY.(ΛZ.N)y
β2

−→ ΛY.(N [Y/Z]) =α ΛZ.N = Q[A/X]

5.

Q =======⇒ Q′

η2

∨

η2

∨
ΛY.Q[Y] = ⇒ ΛY.Q[Y]

This is because if Q =⇒ Q′ is an internal reduction, it is not a root expansion
and then Q[Y] =⇒ Q′[Y] which implies also ΛY.Q[Y] =⇒ ΛY.Q′[Y]

6.

(λy.M)N
β
> M [N/y]

η2

∨
ΛY.((λy.M)N)[Y]

If M [N/y] is not a Λ-abstraction, then M [N/y]
η2

−→ ΛY.(M [N/y])[Y], oth-
erwise M [N/y] = ΛZ.L and we have:

ΛY.(ΛZ.L)[Y]
β2

−→ ΛY.L[Y/Z] =α ΛZ.L = M [N/y]

Finally, the proof of the weak confluence for the calculus proceeds exactly as
in Theorem 4.11 of [DCK94b].

4 Strong normalization

In this section we prove strong normalization for the full system by means of a
notion of reducibility modified as in [JG92].

4.1 Definitions

Definition 6 (neutral terms) A term t:U is neutral if it is not a λ-abstraction,
a type abstraction or a pair.

Definition 7 (longest reduction path for a term, or rank) Let u be a term,
then ν(u) denotes the length of the longest reduction path starting from u. Notice
that, by König’s Lemma, if u is strongly normalisable then ν(u) is finite.

Definition 8 A reducibility candidate of type U is a set R of terms of type U
with the following properties.

CR1 if t ∈ R, then t is strongly normalisable.
CR2 if t ∈ R and t −→ t’, then t’ ∈ R.
CR3 if t is neutral and for all t’ s.t. t −→ t’ other than a basic expansion we

have that t’ ∈ R, then t ∈ R.

The modification written in bold in CR3 was first suggested in [Jay92] to
adapt Girard’s reducibility proof for the simply typed λ-calculus with expansion
rules.

To discuss its implications, let us recall here the steps that one follows in
a traditional reducibility proof for second order calculi. First, one defines the
notion of reducibility candidate, remarks that the set of stronlgy normalizing
terms is a reducibility candidate, defines the notion of product and function space
for reducibility candidates, and shows that the product and function spaces of
any given reducibility candidate is still a reducibility candidate. Then one defines

a notion of reducible candidate with parameters RED [
−→
R /

−→
X]for all types T and

one shows by induction on the types that all reducible candidate with parameters
is a reducible candidate. Finally, using a bunch of technical lemmas, one shows
by structural induction on the terms that every instance of a term t (and in
particular t itself) is reducible, hence strongly normalizable.

In the presence of expansions, we have to alter the order of several lemmas,
and it is not evident that the set of strongly normalizing terms form a reducibility
candidate in general, while this is trivial with Girard’s formulation of CR3.

Fortunately, it will be enough to show that the set of strongly normalizing
terms of base or variable types only are a reducibility candidate.

Proposition 9. The set of strongly normalizable terms of basic type or variable
type are a reducibility candidate.

Proof. Just notice that on terms of basic type or variable type the modified
(CR3) condition is equal to Girard’s original (CR3) condition, because no root
expansion is possible, so the proof goes through as in the usual case without
expansions.

Remark. A reducibility candidate R, if it exists, is never empty as CR3 implies
that it always contains the variables of type U, because they are neutral and
there is no reduction other than basic expansions leaving them.

Lemma10 normalization lemma.

(i) If t : A×B is a term such that p1t : A and p2t are s. n. then so is t.
(ii) If t : A → B is a term and x : A is a variable not free in t such that tx : B

is s. n. then t is s. n..
(iii) If t : ∀Y.A is a term and X is a type variable not free in t such that t[X] :

A[X/Y] is s. n. then t is s. n..
(iv) If t : A is a s. n. term, then λx.t and ΛX.t are s. n. too.

Proof. By induction on the maximal reduction lengths of the strongly normal-
izing terms.

If R and S are reducibility candidates of types U and V, we can define the
following sets:

t ∈ R× S⇐⇒ π1(t) ∈ U and π2(t) ∈ V t ∈ R → S⇐⇒ for all u ∈ R, tu ∈ S

Lemma11 Pairing. Let R1 and R2 be reducibility candidates of types A1 and
A2 and let u : A1 ∈ R1 and v : A2 ∈ R2 . Then pi〈u, v〉 : Ai ∈ Ri.

Proof. By induction on the normalization lengths of u and v, using (CR3), as
usual.

Theorem12. If R1 and R2 are reducibility candidates of types U1 and U2, then
R1 ×R2 is a reducibility candidate of type U1 × U2.

Proof. The proof is still done by induction on the type. It is rather different from
the usual one, so we show it in full in the Appendix.

4.2 Reducibility with parameters

Let T be a type, and
−→
X be a set of type variables that contains at least all

the free type variables of T. For
−→
U a sequence of types of the same length, let

T[
−→
U /

−→
X] be the type obtained by simultaneous substitution of the X’s with the

U’s, and
−→
R a sequence of reducibility candidates of corresponding types.

Definition 13 The set REDT [
−→
R /

−→
X] of reducible terms of type T is defined by

induction on the type T as follows (where the
−→
R are reducibility candidates of

type
−→
U).

– if T is atomic, REDT [
−→
R /

−→
X] is the set of s. n. terms of type T

– if T is Xi, REDT [
−→
R /

−→
X] is Ri

– if T is U × V then REDT [
−→
R /

−→
X] is REDU [

−→
R /

−→
X]×REDV [

−→
R /

−→
X]

– if T is U → V then REDT [
−→
R /

−→
X] is REDU [

−→
R /

−→
X] → REDV [

−→
R /

−→
X]

– if T is ∀Y.W then REDT [
−→
R /

−→
X] is the set of terms t of type T[

−→
U /

−→
X]

such that, for every type V and reducibility candidate S of this type, t[V] ∈

REDW [
−→
R /

−→
U , S/Y]

Lemma14 Universal abstraction. If for every type V and candidate S, REDW [
−→
R /

−→
X ,S/Y]

is a reducibility candidate and v[V/Y] ∈ REDW [
−→
R /

−→
X ,S/Y], then ΛY.v ∈ RED∀Y.W [

−→
R /

−→
X]

Proof. We need to show that (ΛY.v)[V] ∈ REDW [
−→
R /

−→
X ,S/Y] for every type

V and candidate S of type V. We can argue by induction on ν(v), because v

is strongly normalizable as v = v[Y/Y] is in REDW [
−→
R /

−→
X ,SNY /Y], which is

a reducibility candidate by hypothesis. Since (ΛY.v)[V] is neutral, we will use

CR3 for REDW [
−→
R /

−→
X ,S/Y].

Converting a redex of (ΛY.v)[V] without using basic expansions can yield:

– v[V/Y], which is in REDW [
−→
R /

−→
X ,S/Y] by hypothesis

– (ΛY.v’)[V] with v’ one step from v; now, v[V/Y] reduces to v’[V/Y]3, so we

can apply induction on ν(v) and get (ΛY.v’)[V] ∈ REDW [
−→
R /

−→
X ,S/Y]

The results follows then by CR3 for REDW [
−→
R /

−→
X].

In the following lemma we will talk about subtypes of a given type, where the
subtypes of A → B are given by A → B itself together with the subtypes of A
and B, and similarly for A×B, while the subtypes of ∀X.A are given by ∀X.A
itself together with the subtypes of A. This notion also provide a natural order
over types.

Lemma15 Abstraction.

Let x:U and v:V, and suppose that REDW [
−→
R /

−→
X] is a reducibility candidate

for all W subtypes of U or V (inclusive). If for all u ∈ REDU [
−→
R /

−→
X] we have

v[u/x] ∈ REDV [
−→
R /

−→
X], then λx.v ∈ REDU→V [

−→
R /

−→
X]

Proof. Assume the property is true for all types strictly smaller than U → V .

To show that λx.v ∈ REDU→V [
−→
R /

−→
X], we need to show that (λx.v)u ∈

REDV [
−→
R /

−→
X] for all u ∈ REDU [

−→
R /

−→
X], and we will do so by using CR3 for

REDV [
−→
R /

−→
X].

We know that x:U is in REDU [
−→
R /

−→
X] (remark 4.1).

3 Since type substitution does not alter the structure of a term, we can perform on
v[V/Y] all the reductions we could perform on v, or maybe more as new expansion
redexes can arise, but surely not less.

So v = v[x/x] is in REDV [
−→
R /

−→
X], hence strongly normalizable by CR1 and

we can argue by induction on ν(u) + ν(v) to show that all terms one step from
(λx.v) u are reducible.

The term (λx.v) u converts to

– v[u/x] that is in REDV [
−→
R /

−→
X] by hypothesis.

– (λx.v’) u with v’ one step from v. To apply the induction hypothesis using

the fact that ν(v′) < ν(v), and get (λx.v’) u ∈ REDV [
−→
R /

−→
X], we need to

show now that v’[u/x] is in REDV [
−→
R /

−→
X]. If v’[u/x] is one step from v[u/x],

then this comes from CR2 for REDV [
−→
R /

−→
X].

If v’[u/x] is not one step from v[u/x], then v’ is obtained from v by an
expansion of an occurrence of x and u is either a pair, a λ-abstraction or a
type abstraction. Notice now that if u is a pair, 〈p1u, p2u〉 is reducible by
Lemma 11; if u is an abstraction of type U = C → D then by definition of

u ∈ REDU [
−→
R /

−→
X], ut ∈ REDD[

−→
R /

−→
X] for all t ∈ REDC [

−→
R /

−→
X], and by

induction hypothesis on the type we have that λy.uy ∈ REDC→D[
−→
R /

−→
X];

finally, if u is a type abstraction of type U = ∀X.W , then by definition of u

∈ REDU [
−→
R /

−→
X], for every type V and reducibility candidate S of this type,

u[X][V/X] = u[V] ∈ REDW [
−→
R /

−→
U , S/Y], which is a reducibiblity candidate

by hypothesis, so we have that ΛX.u[X] ∈ RED∀X.D[
−→
R /

−→
X] by lemma 14.

Let us now use η(u) for either 〈p1u, p2u〉 with u a pair or λy.uy with u a λ-
abstraction or ΛX.u[X] with u a type abstraction. What we have just shown

means that by hypothesis v[η(u)/x] ∈ REDV [
−→
R /

−→
X], but it is straightfor-

ward to see that η(u)→→u, so we can build a reduction sequence v[η(u)/x]→→v′[u/x],

and then use repeatedly CR2 forREDV [
−→
R /

−→
X] to deduce v’[u/x] ∈REDV [

−→
R /

−→
X],

as neeeded.

– (λx.v)u’ with u’ one step from u. Then u’ ∈ REDU [
−→
R /

−→
X] by CR2, ν(u′) <

ν(u) and v[u’/x] ∈ REDV [
−→
R /

−→
X] by repeated applications of CR2, as it is

some steps from v[u/x]. So we can apply again the induction hypothesis.

Since (λx.v)u is neutral and it converts to terms in REDV [
−→
R /

−→
X] only, it is

in REDV [
−→
R /

−→
X] too. Hence λx.v is in REDU→V [

−→
R /

−→
X] by definition.

Theorem16. REDT [
−→
R /

−→
X] is a reducibility candidate of type T[

−→
U /

−→
X]

Proof. We proceed by structural induction on the type T. We show only the
cases for the arrow and universal types, which are the ones that change with
expansions.

Arrow types Let T be U1 → U2. We know by induction hypothesis that

REDU1
[
−→
R /

−→
X], REDU2

[
−→
R /

−→
X] and in fact all REDW [

−→
R /

−→
X] for W sub-

type of the Ui, are reducibility candidates, and we will now show that

REDU1→U2
[
−→
R /

−→
X] = REDU1

[
−→
R /

−→
X] → REDU1

[
−→
R /

−→
X] is a reducibility can-

didate.

– (CR1) if t ∈ REDU1
[
−→
R /

−→
X] → REDU2

[
−→
R /

−→
X], then let x be a variable of

type U1. Since x ∈ any reducibility candidate of type U1, (remark 4.1), in

particular x ∈ REDU1
[
−→
R /

−→
X] and we get that (tx) ∈ REDU2

[
−→
R /

−→
X] by

definition, hence (tx) is strongly normalisable by CR1 for REDU2
[
−→
R /

−→
X],

which is a reducibility candidate by induction hypothesis. This suffices to
show that t is strongly normalisable, by Lemma 10.

– (CR2) if t −→ t’, we need to show (t’u) ∈ REDU2
[
−→
R /

−→
X] for all u ∈

REDU1
[
−→
R /

−→
X]. Take then u ∈REDU1

[
−→
R /

−→
X]; we have (tu) ∈REDU2

[
−→
R /

−→
X]

by definition of reducibility candidate. If (tu)−→ (t’u), then (t’u) ∈REDU2
[
−→
R /

−→
X]

by CR2 for REDU2
[
−→
R /

−→
X], which is a reducibility candidate by induc-

tion hypothesis. Otherwise, t −→ λx : U1.tx, but tu = (tx)[u/x] is in

REDU2
[
−→
R /

−→
X] for any u ∈ REDU1

[
−→
R /

−→
X] by induction hypothesis, so we

can conclude by applying lemma 15.
– (CR3) t is neutral and all t’ one step from t other than basic expansions are in

REDU1
[
−→
R /

−→
X] → REDU2

[
−→
R /

−→
X]. In order to show t ∈ REDU1

[
−→
R /

−→
X] →

REDU2
[
−→
R /

−→
X], we need to show (tu) ∈REDU2

[
−→
R /

−→
X] for all u ∈REDU1

[
−→
R /

−→
X].

By induction hypothesis on REDU1
[
−→
R /

−→
X], we get u is strongly normalis-

able, so we can argue by induction on ν(u).
In one step, and without performing basic expansions, (tu) converts to:
• (t’u) with t’ one step from t.

As t’ ∈REDU1
[
−→
R /

−→
X] → REDU2

[
−→
R /

−→
X], we get (t’u) ∈REDU2

[
−→
R /

−→
X]

by definition.
• (tu’) with u’ one step from u.

By induction hypothesis on REDU1
[
−→
R /

−→
X], u’ ∈ REDU1

[
−→
R /

−→
X] and

ν(u′) < ν(u), so (tu’) ∈ REDU2
[
−→
R /

−→
X] by the induction hypothesis on

u.

Universal types Let T = ∀Y.W .

– (CR1) if t ∈ RED∀Y.W [
−→
R /

−→
X], then let X be an arbitrary type variable and

S be an arbitrary reducibility candidate of type X (for example, the strongly

normalizable terms of type X). Then t[X] ∈ REDW [
−→
R /

−→
X ,S/Y] by defini-

tion, so by induction hypothesis we know that t[X] is strongly normalizable.
Then we can conclude by 10 that t is strongly normalisable.

– (CR2) let t −→ t’; for all types V and reducibility candidate S of this type,

we have that t[V] ∈ REDW [
−→
R /

−→
X ,S/Y], so if t[V] −→ t’[V], then t’[V] ∈

REDW [
−→
R /

−→
X ,S/Y] by induction hypothesis on W.

Otherwise t −→ ΛX.t[X]=t’: we know by inductive hypothesis that for all

types V and reducibility candidate S of this type REDW [
−→
R /

−→
X ,S/Y] is a re-

ducibility candidate and we know that t[Y][V/Y]=t[V] ∈REDW [
−→
R /

−→
X ,S/Y],

so we can apply lemma 14 and we get t’=ΛX.t[X] ∈ RED∀Y.W [
−→
R /

−→
X], and

finally we get t’[V] ∈ REDW [
−→
R /

−→
X ,S/Y] by definition.

In any case, t’[V] ∈ REDW [
−→
R /

−→
X], so by definition t’ ∈ RED∀Y.W [

−→
R /

−→
X].

– (CR3) t is neutral and all t’ one step from t other than basic expansions are

in REDT [
−→
R /

−→
X]. Take V and S: if we apply a conversion other than a basic

expansion to t[V], the only possible result is t′[V] (since t is neutral), and
t’ cannot be a basic expansion of t (because t is applied). Now, this means

that t’ is in REDT [
−→
R /

−→
X], so by definition t′[V] is in REDW [

−→
R /

−→
X ,S/Y],

and by (CR3) for W we get that t[V] is in REDW [
−→
R /

−→
X ,S/Y], so we can

conclude that t ∈ REDT [
−→
R /

−→
X].

Reducibility theorem

We shall need now one more lemma to deduce reducibility of a term from re-
ducibility of its subterms.

Lemma17. REDT [V/Y][
−→
R /

−→
X] = REDT [

−→
R /

−→
X ,REDV [

−→
R /

−→
X]/Y]

Proof. By induction on T.

Lemma18 Universal application.

If t ∈ RED∀Y.W [
−→
R /

−→
X], then t[V] ∈ REDW [V/Y][

−→
R /

−→
X] for every type V.

Proof. By hypothesis, t[V] ∈ REDW [
−→
R /

−→
X ,S/Y] for every candidate S of type

V. Taking S = REDV [
−→
R /

−→
X], the result follows by Lemma 17.

The theorem As in [GLT90], we say here that a term t of type T is reducible

if it is in REDT [
−−→
SN /

−→
X], where

−→
X are the free type variables of T and SN i is

the set of strongly normalizable terms of type Xi.
In the proof of the theorem, there is the need of a stronger induction hypothesis,
from which the strong normalization follows by putting ui = xi and Ri = SNi.

Proposition 19. Let t:T be any term, whose free variables are contained in
x1 : U1, . . . , xn : Un, and all the free variable of T, U1, . . . Un are among X1,

. . . Xm. If R1, . . . Rm are reducibility candidates of types V1, . . . Vm, and u1,

. . . um are terms of types U1[
−→
V /

−→
X], . . . Um[

−→
V /

−→
X]which are in REDU1

[
−→
R /

−→
X],

. . . REDUn
[
−→
R /

−→
X], then t[

−→
V /

−→
X][−→u /−→x] ∈ REDT [

−→
R /

−→
X].

Proof. By induction on t as usual.

Theorem20.
β2η2π∗
−→ is strongly normalizing.

Proof. Let t be any term, and U be its type. All its free variables are in any

reducibility candidate by remark 4.1, so that t = t[
−→
X /

−→
X][x1/x1, . . ., xn/xn] ∈

RED
U [
−→
X /

−→
X]

[
−−→
SN /

−→
X] by the previous lemma. Then it is strongly normalizing

by CR1.

5 Adding the Top type modularly

It is possible to extend the previous reducibility proof to take into account also
the special unit type T and the Top rule M : T −→ ∗ : T that one needs for
various systems (see [CDC91], for a discussion of the motivation for the Top
rule), but that would not be a wise approach to this rule: indeed, its great
simplicity will allow to add it modularly to a given canonical system, without
any need to go again through a long proof involving the rest of the calculus.

Without going into much formal details, we want to give here a very simple
argument of general applicability that shows how Top preserves strong normal-
ization, and hence also confluence under some additional assumptions.

Proposition 21 Preservation of Strong Normalization with Top. Given
a strongly normalizing left-linear reduction relation R, generated by rules that
do not contain the special term ∗ in their left hand side, then R + Top is still
strongly normalizing.

Proof. The argument of the proof is indeed very simple: take any infinite re-
duction Π in R + Top, and notice that (since Top alone is clearly strongly
normalizing) this reduction must contain infinite R steps. Now, one can easily
build an infinite reduction in R alone by using the infinite number of R steps
from the Π reduction: it suffices to remark that any Top reduction step followed

by an R reduction step in Π C[M]
Top
−→ C[∗]

R
−→ M ′ can be postponed as in

C[M]
R
−→ M ′′ Top

−→∗ M ′, as the rules on R are left-linear and do not transform ∗
(basically, rules in R can only pass ∗ around untouched, or delete it).

Clearly, if R is also confluent, and Top does not break local confluence, then,
as an easy corollary of Newman’s Lemma, R+ Top is also confluent.

It is then quite immediate to derive the following

Corollary 22. The second order lambda calculus with expansive rules for prod-
ucts, arrow and universal types, and the Top rule is strongly normalizing and
confluent.

Notice that the Top rule, whose l.h.s. is just a metavariable, does not fit
into the general scheme of [JO91]: it would be interesting to see if the simple
argument presented here allow to modify that scheme in order to take even Top
into account.

6 Conclusions and future work

We explained why expansion rules and the second order β rule cannot be han-
dled separately in a modular way and we showed how to handle them together
by a careful restructuration of the usual reducibility candidate method. This
work suggests that the expansionary approach to extensional rules is viable even
in a second order context, and is a firm step towards a redesign of the exten-
sional rules in more complex systems like Fω or the Calculus of Constructions.
Expansion rules behave better than contractions in the presence of additional
axioms (like the one for unit or for a fixpoint combinator) and give a natural
characterization of the notion of η-long normal forms.

Finally, we would like to suggest that the use of expansion rules for ex-
tensional equalities is very promising in order to improve the modularity re-
sults on the combination of the lambda calculus with first or higher order al-
gebraic rewriting systems (presented for example in [BTM86, BT88, BTG94]
and [JO91]): these works use the traditional contractive interpretation of η, and
cannot handle higher order rewrite rules like the one given above for the unit
type, while such rule is not problematic at all in the presence of expansion rules.

Acknowledgements

We are endebted to Neil Ghani for the fundamental remark that we only need
the set of strongly normalizing terms of basic types for the proof to go through.

References

[Aka93] Yohji Akama. On Mints’ reductions for ccc-Calculus. In Typed Lambda Cal-
culus and Applications, number 664 in LNCS, pages 1–12. Springer Verlag,
1993.

[Bar84] Henk Barendregt. The Lambda Calculus; Its syntax and Semantics (revised
edition). North Holland, 1984.

[BT88] Val Breazu-Tannen. Combining algebra and higher-order types. In Proceed-
ings, Third Annual Symposium on Logic in Computer Science, pages 82–90,
Edinburgh, Scotland, July 5–8 1988. IEEE Computer Society.

[BTG94] Val Breazu-Tannen and Jean Gallier. Polymorphic rewiting preserves alge-
braic confluence. Information and Computation, 1994.

[BTM86] Val Breazu-Tannen and Albert R. Meyer. Polymorphism is conservative
over simple types (preliminary report). In Proceedings, Symposium on Logic
in Computer Science, pages 7–17, Cambridge, Massachusetts, June 16–18
1986. IEEE Computer Society.

[CDC91] Pierre-Louis Curien and Roberto Di Cosmo. A confluent reduction system
for the λ-calculus with surjective pairing and terminal object. In Leach,
Monien, and Artalejo, editors, Intern. Conf. on Automata, Languages and
Programming (ICALP), volume 510 of Lecture Notes in Computer Science,
pages 291–302. Springer-Verlag, July 1991.

[Cub92] Djordje Cubric. On free CCC. Distributed on the types mailing list, 1992.
[DCK94a] Roberto Di Cosmo and Delia Kesner. Combining first order algebraic

rewriting systems, recursion and extensional lambda calculi. In Serge Abite-
boul and Eli Shamir, editors, Intern. Conf. on Automata, Languages and
Programming (ICALP), volume 820 of Lecture Notes in Computer Science,
pages 462–472. Springer-Verlag, July 1994.

[DCK94b] Roberto Di Cosmo and Delia Kesner. Simulating expansions without ex-
pansions. Mathematical Structures in Computer Science, 4:1–48, 1994. A
preliminary version is available as Technical Report LIENS-93-11/INRIA
1911.

[DCP95] Roberto Di Cosmo and Adolfo Piperno. Expanding extensional polymor-
phism. In Mariangiola Dezani-Ciancaglini and Gordon Plotkin, editors,
Typed Lambda Calculus and Applications, volume 902 of Lecture Notes in
Computer Science, pages 139–153, April 1995.

[Dou93] Daniel J. Dougherty. Some lambda calculi with categorical sums and prod-
ucts. In Proc. of the Fifth International Conference on Rewriting Techniques
and Applications (RTA), 1993.

[Ges90] Alfons Geser. Relative termination. Dissertation, Fakultät für Mathematik
und Informatik, Universität Passau, Germany, 1990. Also available as: Re-
port 91-03, Ulmer Informatik-Berichte, Universität Ulm, 1991.

[Geu92] Herman Geuvers. The church-rosser property for βη-reduction in typed λ-
calculi. In 7thProceedings of the Symposium on Logic in Computer Science
(LICS), pages 453–460, 1992.

[Gha95] Neil Ghani. Extensionality and polymorphism. University of Edimburgh,
Submitted, 1995.

[GLT90] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cam-
bridge University Press, 1990.

[Jay92] Colin Barry Jay. Long βη normal forms and confluence (revised). Technical
Report 44, LFCS - University of Edinburgh, August 1992.

[JG92] Colin Barry Jay and Neil Ghani. The Virtues of Eta-expansion. Technical
Report ECS-LFCS-92-243, LFCS, 1992. University of Edimburgh, prelimi-
nary version of [?].

[JO91] Jean-Pierre Jouannaud and Mitsuhiro Okada. A computation model for exe-
cutable higher-order algebraic specification languages. In Proceedings, Sixth
Annual IEEE Symposium on Logic in Computer Science, pages 350–361,
Amsterdam, The Netherlands, July 15–18 1991. IEEE Computer Society
Press.

[Klo80] Jan Willem Klop. Combinatory reduction systems. Mathematical Center
Tracts, 27, 1980.

[Nip90] Tobias Nipkow. A critical pair lemma for higher-order rewrite systems and
its application to λ∗. First Annual Workshop on Logical Frameworks, 1990.

A Strong normalization

Theorem 12 If R1 and R2 are reducibility candidates of types U1 and U2, then
R1 ×R2 is a reducibility candidate of type U1 × U2.

Proof. Assume that R1 and R2 are reducibility candidates of type U1 and U2,
respectively.

– (CR1) if t ∈ R1 ×R2, then πi(t) is strongly normalisable by the hypothesis
on Ri, since πi(t) ∈ Ri by definition. Hence t is strongly normalisable by
Lemma 10.

– (CR2) if t −→ t’ not via a basic expansion, then π1(t) −→ π1(t
′) and π2(t)

−→ π2(t
′).

As t ∈ R1 × R2, then π1(t) ∈ R1 and π2(t) ∈ R2. By hypothesis CR2 for
R1 and R2 we get π1(t

′) ∈ R1 and π2(t
′) ∈ R2, hence, by definition, t’ ∈

R1 ×R2.
In the case t−→〈p1t, p2t〉, we must prove that pi〈p1(t), p2(t)〉 ∈ Ri. By defi-
nition of R1 ×R2, p1t is in R1 and p2t is in R2, so we can apply Lemma 11.

– (CR3) t is neutral and every t’ one step from t other than basic expansions
are in R1 ×R2.
We need to show π1(t) ∈ R1 and π2(t) ∈ R2.
Now notice that applying a one step reduction to πi(t) which is not a basic
expansion can only result in some πi(t

′) as t is neutral. Furthermore, this
t’ is not a basic expansion of t because it is in an influential position. So,
t’ is in R1 × R2, and then by definition π1(t

′) ∈ R1 and π2(t
′) ∈ R2. Since

the πi(t) are neutral and every term one step from them other than basic
expansions is in Ri, the hypothesis for R1 and R2 ensure π1(t) ∈ R1 and
π2(t) ∈ R2. So t ∈ R1 ×R2 by definition.

This article was processed using the LaTEX macro package with LLNCS style

