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We add extensional equalities for the functional and product types to the typed λ-calculus with not

only products and terminal object, but also sums and bounded recursion (a version of recursion that

does not allow recursive calls of infinite length). We provide a confluent and strongly normalizing

(thus decidable) rewriting system for the calculus, that stays confluent when allowing unbounded

recursion. For that, we turn the extensional equalities into expansion rules, and not into contractions

as is done traditionally. We first prove the calculus to be weakly confluent, which is a more complex

and interesting task than for the usual λ-calculus. Then we provide an effective mechanism to simulate

expansions without expansion rules, so that the strong normalization of the calculus can be derived

from that of the underlying, traditional, non extensional system. These results give us the confluence

of the full calculus, but we also show how to deduce confluence directly form our simulation technique,

without the weak confluence property.
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1. Introduction

Over the past years there has been a growing interest in the properties of λ-calculus extended with

various different type constructors, in particular pairs and sums, used to represent common data

types. For these type constructors it is customary to provide a set of equalities that are then turned

into computation rules: this is the case, for example, of the elimination rules for pairs:

(π1) π1(〈M,N〉) = M (π2) π2(〈M,N〉) = N

They tell us how to operationally compute with objects of these types: if we have a pair 〈M,N〉,

then we can decompose it to access its first or second component.

There is anyway something else that one likes to do with λ-calculus, besides using λ-terms as

programs to be computed: one would like to reason about programs, to prove that they enjoy certain

properties. Here is where extensional equalities come into play. In the case of functions, for example,

since the only operational way to use a function is to apply it to an argument, we do not really want

to consider a term M of function type different from the term λx.Mx where x does not occur free in

M : both terms, when applied to an argument N , give the same result MN . Similarly for pairs, the

only operational way to use a pair is by projecting out the first or the second component, so we do

not want to consider a term M of product type different from the term 〈π1(M), π2(M)〉: the result of

accessing any of these two terms via a first or second projection is the same term π1(M) or π2(M).

These facts can be incorporated in the calculus in the form of equalities, that one can read in at

least two different ways:

— an operational way: these equalities just state possible optimizations of a program. Since a term

〈π1(M), π2(M)〉 is more complex then M , but behaves the same way, it is convenient to replace

all its occurrences by M , as this transformation will yield an equivalent, but more efficient and

smaller program. Similarly, we will replace every occurrence of λx.Mx by M .

— a theoretical way: these equalities state a relation between a program and its type. They just tell

us that whenever a term M has a functional type, then it must really be a function, built by

λ-abstraction, so we ought to replace it by λx.Mx if it is not already a function. Similarly, a term
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M of product type has to be really a pair, built via the pair constructor, or otherwise it must be

replaced by 〈π1(M), π2(M)〉.

As we will briefly see in the Survey, a lot of research activity has focused on the operational reading of

these equalities in the tradition of λ-calculus, while only a little on the theoretical one. In this paper

we will show how this last reading of the equalities provides a confluent and strongly normalizing

reduction system for the simply typed λ-calculus with pairs, sums, unit type (or terminal object) and

a bounded recursion operator. We also show that the same reduction system stays confluent when

allowing unbounded recursion, while of course loosing the strong normalization property.

1.1. Survey

Due to the deep connections between λ-calculus, proof theory and category theory, works on exten-

sional equalities have appeared with different motivations in all these fields.

By far, the best known extensional equality is the η axiom that we informally introduced above,

written in the λ-calculus formalism as

(η) λx.Mx = M provided x is not free in M

This axiom, also known as extensionality , has traditionally been turned into a reduction, carrying

the same name, by orienting the equality from left to right, interpreting operationally equality as a

contraction. Such an interpretation is well behaved as it preserves confluence (CF58).

In the early 70’s, the attention was focusing on products and the extensional rule for pairs, called

surjective pairing, which is the analog for product types of the usual η extensional rule.

(SP ) 〈π1(M), π2(M)〉 = M

With the previous experience of the η rule, it is easy to understand how, at that time, most of the

people thought that the right way to turn such an equality into a rewrite rule was also from left

to right, as a contraction. But in 1980, J.W. Klop discovered (Klo80) that, if added to the usual

confluent rewrite rules for pure λ-calculus, this interpretation of SP breaks confluence†.

Anyway, this first negative result was shortly after mitigated in (Pot81) for the simply typed λ-

calculus with η and SP contractions, by providing a first proof of confluence and strong normalization,

later on simplified in different ways (see (Tro86) or (GLT90), for example). From then on, the contrac-

tion rule for SP was not considered harmful in a typed framework, until the seminal work by Lambek

and Scott (LS86). There, the decision problem of the equational theory of Cartesian Closed Categories

(ccc’s) is solved using a particular typed λ-calculus equipped with not only η and SP equalities, but

also with a special type T representing the terminal object of the ccc’s‡. This distinguished atomic

type comes with a further extensional axiom asserting that there is exactly one term ∗ of type T:

(Top) M : T = ∗

Now, the type T has the bad property of destroying confluence, if the extensional equalities η and SP

are turned into contraction rules: the following are the critical pairs that arise immediately, as first

pointed out by Obtulowicz, (see (LS86)):

† See (Bar84), p. 403-409 for a short history and references.
‡ This is the Unit type in languages like ML.
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〈π1(x), π2(x)〉 ⇒SP x 〈π1(x), π2(x)〉 ⇒SP x

⇓Top ⇓Top

〈∗, π2(x)〉 〈π1(x), ∗〉

(λx : T.Mx) : T→ A⇒η M (λx : A.Mx) : A→ T⇒η M

⇓Top ⇓Top

(λx : T.M∗) : T→ A (λx : A.∗) : A→ T

It is indeed possible, but not easy, to extend the contractive reduction system in order to recover

confluence. A first step towards such a confluent system was taken by Poigné and Voss, who were

not inspired by category theory, but by the implementation of algebraic data types (PV87). In their

paper, they study a calculus that includes λ1βηπ∗, and notice that to solve the previous critical

pairs one needs to add an infinite number of reduction rules (that can be anyway finitely described).

Then confluence of such an extended system can be proved by showing weak confluence and strong

normalization. Unfortunately, the critical pair for (λx : A.Mx) : T→ A is missing there, and the

strong normalization proof is incomplete.

More recently, Curien and the first author got interested in a polymorphic extension of λ1βηπ∗, that

arose in the study of the theory of object oriented programming and of isomorphisms of types (CDC91).

They give a complete (infinite) set of reduction rules for the calculus, which is proved confluent using

just weak confluence, weak normalization and some additional properties.

Meanwhile, in the field of proof theory, Prawitz was suggesting (Pra71) to turn these extensional

equalities into expansion rules, rather than contractions. Building on such ideas, but motivated by

the study of coherence problems in category theory, Mints gives a first faulty proof that in the typed

framework expansion rules, if handled with care, are weakly normalizing and preserve confluence of

the typed calculus (Min79)§.

This idea of using expansion rules seems to have passed unnoticed for a long time, even if the

so called η-long normal forms were well known and used in the study of higher order unification

problems (Hue76): only in these last years there has been a renewed interest in expansion rules.

In recent work (Jay92), still motivated by category theoretic investigation, Jay explores a simply

typed λ-calculus with just T and a natural number type N as base types, equipped with an induction

combinator for terms of type N. He introduced expansion rules for η and SP that are exactly the same

as the ones originally used by Mints, and in (JG92) this calculus is proved confluent and strongly

normalizing. Category theory is also the motivation of Cubric (Cub92), who repaired the error in

the original proof by Mints, showing confluence (by means of a careful study of residuals) and also

weak normalization (but not strong normalization). An interesting divide-and-conquer approach is

proposed in (Aka93), where confluence and strong normalization are shown in a modular way. Finally,

§ The same idea is present in (Min77).
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in (Dou93), confluence is shown via the usual Newman’s Lemma and strong normalization by means

of a variation of the reducibility proof based on introduction rather than elimination terms.

1.2. Our work

The present paper is inspired especially by (Jay92) and (PV87). We use expansion rules to provide

a confluent rewriting system for the typed λ-calculus with not only products and terminal object,

but also sums and recursion. This result is derived from the confluence of a restricted system where

recursion is bounded (recursive calls of infinite length are not allowed), which is proved to be weakly

confluent and strongly normalizing.

We show that strong normalization of the full system can be reduced to that of the system without

expansion rules, for which the traditional techniques can be used. For that purpose, we show that

any one step reduction in the calculus with expansions can be simulated by a non-empty reduction

sequence in the calculus without expansions. It turns out that this result is powerful enough to prove

directly also the confluence property, as shown in section 7.

Since the reduction with expansion rules is not a congruence, several fundamental properties that

hold for the well known typed λ-calculi have to be reformulated in the expansionary framework in a

different way as we will see in Section 4. For this reason we believe that the system with expansion

rules deserves to be studied much more carefully, so we will undertake the task of proving directly

weak confluence: this will lead us to uncover many of the essential features of this reduction.

We introduce now the calculus and its reduction system in section 2, then we investigate the

key properties of the new reduction system: weak confluence (section 4) and strong normalization

(section 5). In section 7 we derive the confluence property in two different ways and finally in the

conclusion we discuss some further applications of our proof techniques.

An extended abstract of this work can be found in (DCK93a).

2. The Calculus

It is now time to introduce the calculus we will deal with in this paper. There are two versions,

one with bounded recursion, and the other with unbounded recursion, that differ just in the term

formation rule and in the equality rule for recursive terms. We will now introduce the calculus with

bounded recursion and then describe how the unbounded version can be obtained from it.

2.1. Types and Terms

The set of types of our calculus contains a distinguished type constant T¶, a denumerable set of

atomic or base types, and is closed w.r.t. formation of function, product and sum, i.e. if A and B are

types, then also A→ B, A×B and A+B are types.

For each type A, we fix a denumerable set of variables of that type. We will use x, y, z, . . . to range

over variables, and for a term M we write M : A to mean that M is a term of type A.

The term formation rules of the calculus can then be presented as follows.

¶ This stands for the terminal object in ccc’s or for the Unit type in languages like ML.



R. Di Cosmo and D. Kesner 6

Γ ⊢ ∗ : T

1 ≤ i ≤ n and the xi’s are pairwise distinct

x1 : A1, . . . , xn : An ⊢ xi : Ai

Γ, x : A ⊢M : B

Γ ⊢ λx : A.M : A→ B

Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢ (MN) : B

Γ ⊢M : A Γ ⊢ N : B

Γ ⊢ 〈M,N〉 : A×B

Γ ⊢M : B1 ×B2

i = 1, 2

Γ ⊢ πi(M) : Bi

Γ ⊢M : Bi

i = 1, 2

Γ ⊢ ini
B1+B2

(M) : B1 +B2

Γ ⊢ P : A1 +A2 Γ ⊢Mi : Ai → D

Γ ⊢ Case(P,M1,M2) : D

Γ, x : A ⊢M : A

i ≥ 0

Γ ⊢ (rec x : A.M)i : A

We may omit types of variables in λ-abstractions when they are clear from the context writing

λy.M instead of λy : C.M .

Notation 2.1. (Free variables, substitutions)

The set of free variables of a term M will be noted FV (M). It can be defined inductively as follows:

FV (∗) =∅

FV (x) ={x}

FV (OA) =FV (M)

FV (MN) =FV (M) + FV (N)

FV (〈M,N〉) =FV (M) + FV (N)

FV (λx : A.M) =FV (M)− {x}

FV ((rec x : A.M)i) =FV (M)− {x}

FV (in1
C(M)) =FV (M)

FV (in2
C(M)) =FV (M)

FV (π1(M)) =FV (M)

FV (π2(M)) =FV (M)

FV (Case(P,M,N))=FV (P ) + FV (M) + FV (N)

We write [N1, . . . , Nn/x1, . . . , xn] (often abbreviated [N/x]) for the typed substitution mapping each

variable xi : Ai to a term Ni : Ai. We write M [N/x] for the term M where each variable xi free in

M is replaced by Ni.
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2.2. Equality

Besides the usual identification of terms up to α conversion (i.e. renaming of bound variables), our

calculus is equipped with the equality E on terms generated from the following axioms.

(β) (λx : A.M)N = M [N/x]

(π1) π1(〈M1,M2〉) = M1

(π2) π2(〈M1,M2〉) = M2

(ρ) Case(in1
C(R),M1,M2) = M1R

Case(in2
C(R),M1,M2) = M2R

(rec) (rec y : C.M)i+1 = M [(rec y : C.M)i/y]

(η) λx : A.Mx = M if

{
x 6∈ FV (M)

M : A→ B

(δ) 〈π1(M), π2(M)〉 = M if M : A×B

(Top) M = ∗ if M : T

The index i that is attached to each rec term is a bound on the depth of the recursive calls that

can originate from it. With such a bound, it is possible to insure the strong normalization of the

associated reduction system.

The unbounded system is obtained from the bounded one by simply erasing all the bound indexes

from the formation and equality rules (and the associated reduction rules). As we will show later, the

bounded system can simulate any finite reduction of the unbounded system, and this fact will make

it easy to extend the confluence result for the bounded system to the unbounded one. For simplicity,

we will explicitly note the bound index only when necessary, dropping it whenever the properties we

discuss hold in both systems.

3. The confluent rewriting system

The non extensional equality rules and the rule for T can be turned into a confluent rewriting system

by orienting them from left to right, as follows

(β) (λx : A.M)N −→ M [N/x]

(πi) πi(〈M1,M2〉) −→ Mi, for i = 1, 2

(ρ) Case(ini
C(R),M1,M2) −→ MiR, for i = 1, 2

(rec) (rec y : C.M)i+1 −→ M [(rec y : C.M)i/y], for i ≥ 0

(Top) M −→ ∗ if M : T and M 6= ∗

But when we want to turn the extensional equalities for functions and pairs into expansions, as

explained very clearly by Jay (Jay92), we must be careful to avoid the following reduction loops:

λx.M ❀ λy.(λx.M)y ❀ λy.M [y/x] =α λx.M

〈M,N〉 ❀ 〈π1(〈M,N〉), π2(〈M,N〉)〉 ❀ 〈M,N〉

MN ❀ (λx.Mx)N ❀ MN

πi(P ) ❀ πi(〈π1(P ), π2(P )〉) ❀ πi(P )

To break the first two loops we must disallow expansions of terms that are already λ-abstractions

or pairs:
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(η) M −→ λx : A.Mx if

{
x 6∈ FV (M)

M : A→ B and M is not a λ-abstraction

(δ) M −→ 〈π1(M), π2(M)〉 if
{

M : A×B and M is not a pair

But this is not enough: to break the last two loops we must also forbid the η expansion of a term

in a context where this term is applied to an argument, and δ expansion of a term when such a term

is the argument of a projection. This means that we cannot define the one-step reduction relation

=⇒ on terms as the least congruence on terms containing the above reductions −→ , as is done

usually. Instead, one defines formally M =⇒M ′ starting from −→ by induction on the structure of

the term. The definition is the same as a congruence closure but for the two last cases.

We will write M
γ1,...,γn
−→ M ′ if M

γi−→M ′, for some i and
¬γ
−→ stands for a −→ step that is not a

γ step. The one-step reduction relation between terms, denoted =⇒ is defined as follows:

Definition 3.1. (One-step reduction)

• If M −→M ′, then M =⇒M ′

• If M =⇒M ′, then (rec x : A.M)i =⇒ (rec x : A.M ′)i

Case(M,N,O) =⇒ Case(M ′, N,O) in1
C(M) =⇒ in1

C(M
′) 〈M,N〉 =⇒ 〈M ′, N〉

Case(N,M,O) =⇒ Case(N,M,′ O) in2
C(M) =⇒ in2

C(M
′) 〈N,M〉 =⇒ 〈N,M ′〉

Case(N,O,M) =⇒ Case(N,O,M ′) λ x : A.M =⇒ λ x : A.M ′ NM =⇒ NM ′

• If M =⇒M ′ but M
¬η
−→M ′, then MN =⇒M ′N

• If M =⇒M ′ but M
¬δ
−→M ′, then πi(M) =⇒ πi(M

′) for i = 1, 2

Notation 3.2. The transitive and the reflexive transitive closure of =⇒ are noted =⇒+ and =⇒∗

respectively. Similarly we define
∞

=⇒ ,
∞

=⇒+ and
∞

=⇒∗ for the unbounded system.

We will use some standard notions from the theory of rewriting system, such as redex, normal form,

confluence, weak confluence, strong normalization, etc, without explicitly redefining them here.

It is also useful to define a notion of influential positions of a term: informally, a position in a

term is influential if the subterm occurring at that position cannot be expanded at the root. For

example, M occurs at an influential position in the term MN , as η expansion is forbidden on M , no

matters if it is a λ-abstraction or not. Obviously, a position in a term can be influential for η or for δ,

but not for both. This notion can be properly formalized by induction on the structure of the terms

(see (DCK93b)).

3.1. Adequacy of expansions for extensional equalities

First of all, it is necessary to show that the limitations imposed on the reduction system do not make

us loose any valid equality. We will show that the reduction system just introduced really generates

the equalities we defined for the calculus. This comes from the fact that the limitations imposed on

the reductions are introduced exactly to avoid reduction loops.

Theorem 3.3. ( =⇒ generates E) The equality E and the reflexive, symmetric and transitive

closure R of =⇒ are the same relation.

Proof. The fact that R is included in E is evident, as all the reductions rules are derived from the

equality axioms by orienting and restricting them.
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What we are left to show is E ⊆ R. It is enough to show that whenever M = N comes from a

single equality axiom, we can either rewrite M to N or N to M (since R is reflexive, symmetric and

transitive, the other cases will follow trivially).

The basic idea of the proof is to associate to each of these equality steps a reduction step in R. This is

done in the obvious way, except in the cases that would violate one of the restrictions imposed on the

expansion rules, which we will solve using exactly the reduction loop that this restriction is supposed

to prevent.

Here are the problematic cases and how to deal with them. We use the usual context notation C[M ]

to indicate a particular occurrence of a subterm M of interest in the term C[M ].

— C[λx.M ] =η C[λy.(λx.M)y]. We cannot associate an η reduction to this equality, as we cannot

expand something that is already an abstraction. But we can associate to it a β reduction from

C[λy.(λx.M)y] to C[λy.M [y/x]] = C[λx.M ].

— C[〈M,N〉] =δ 〈π1(〈M,N〉), π2(〈M,N〉)〉]. We cannot expand something that is already a pair, but

we can use the πi’s reduction from 〈π1(〈M,N〉), π2(〈M,N〉)〉] to C[〈M,N〉].

— C[MN ] =η C[(λx.Mx)N ]. Here we cannot expand M , which is in an influential position, but

again we can use β to go from C[(λx.Mx)N ] to C[MN ] (recall that x 6∈ FV(M)).

— C[πi(P )] =δ C[πi(〈π1(P ), π2(P )〉)]. We cannot expand P , but we can use the πi’s to go to C[πi(P )]

from C[πi(〈π1(P ), π2(P )〉)].

3.2. Basic Properties of the Calculus

Our calculus enjoys the Subject Reduction property, which guarantees that reduction preserves types.

Proposition 3.4. (Subject Reduction) If Γ ⊢ R : C and R =⇒ R′, then Γ ⊢ R′ : C

Proof. By cases, using the following two lemmas

Lemma 3.5. If Γ, x : A ⊢M : C and x 6∈ FV (M), then Γ ⊢M : C.

Lemma 3.6. If Γ, x : A ⊢M : C and Γ ⊢ N : A, then Γ ⊢M [N/x] : C.

Another remarkable property of this calculus can be stated as follows:

Lemma 3.7. If M is in normal form w.r.t. the system without the η, δ and Top rules and M
η,δ,Top
=⇒ R,

then R is in normal form w.r.t. the system without η, δ and Top.

Proof. Suppose M has no β, πi, ρ or rec redexes. Notice first that a ρ redex cannot be created in

R as there is no way to introduce an ini expression using the η, δ and Top rules. The same for rec.

We are left with the following two cases:

— Suppose R has a β redex. Then R ≡ C[(λx.P )N ] and since M contains no β redexes, we have

necessarily M ≡ C[SN ], P ≡ Sx and S
η
−→ λx.Sx. But this is not possible because η expansions

are not allowed on terms appearing in influential positions for η.

— Suppose R has a πi redex. Then R ≡ C[πi(〈M,N〉)] and since M contains no πi’s redexes, we

have necessarily M ≡ C[πi(T )], M ≡ π1(T ), N ≡ π2(T ) and T
δ
−→ 〈π1(T ), π2(T )〉. But this is not

possible because δ expansions are not allowed on terms appearing in influential positions for δ.



R. Di Cosmo and D. Kesner 10

Corollary 3.8. If M is in normal form with respect to the system without the η, δ and Top rules,

then the (η, δ, Top)-normal form of M is in normal form.

4. Weak Confluence

In this section we set off to prove that the reduction system proposed above is actually weakly

confluent, i.e. that whenever M ′ ⇐=M =⇒M ′′ we can find a term M ′′′ s.t. M ′ =⇒∗M ′′′ ∗⇐= M ′′.

The proof is fairly more complex here than in the case of λ-calculus where extensional equalities are

interpreted as contractions, and this is due to the fact that the reduction relation =⇒ introduced

above is not a congruence on terms.

4.1. Some difficulties

In particular, in the simply typed λ−calculus whenever M =⇒∗M ′ then πi(M) =⇒∗ πi(M
′), and if

also N =⇒∗ N ′, then MN =⇒∗M ′N ′, but this is no longer true now: we have x : A→ B =⇒ λz :

A.xz, but xN cannot reduce to (λz : A.xz)N .

These properties still hold for those reduction sequences M =⇒∗M ′ that do not involve expansions

at the root:

Remark 4.1.

— LetM ≡M0 =⇒M1 =⇒ . . . =⇒Mn−1 =⇒Mn ≡M ′ be a reduction sequence and letN =⇒∗ N ′,

where in the first reduction sequence there are no expansions applied at the root positions of the

Mi’s. Then, MN =⇒∗M ′N ′.

— Let M ≡M0 =⇒M1 =⇒ . . . =⇒Mn−1 =⇒Mn ≡M ′ be a reduction sequence where none of the

M ′
is is expanded at the root. Then πi(M) =⇒∗ πi(M

′), for i = 1, 2.

4.2. Solving Critical Pairs

In this calculus, it is no longer true that reduction is stable by substitution, as in the traditional

λ-calculus:

Remark 4.2.

If P =⇒ P ′, N =⇒ N ′, it is not true in general that P [N/x] =⇒∗ P ′[N/x] and P [N/x] =⇒∗ P [N ′/x].

Indeed, x : A→ B =⇒ λz : A.xz, but x[λy : A.w/x] = λy : A.w cannot reduce in our system to

λz : A.(λy : A.w)z = λz : A.xz[λy : A.w/x], and (yM)[x/y] = xM cannot reduce to (λz : A.xz)M =

(yM)[λz : A.xz/y].

We can prove some weaker properties: if P =⇒ P ′, then P [N/x] and P ′[N/x] have a common reduct

(Lemma 4.5), and similarly P [N/x] and P [N ′/x] when N =⇒ N ′ (Lemma 4.6). This suffices for our

purpose of proving weak confluence of the reduction system.

First of all it is useful to recall here a basic property of substitutions that do hold in our calculus.

Lemma 4.3. If x 6≡ y and x 6∈ FV (L), then

M [N/x][L/y] = M [L/y][N [L/y]/x]

Lemma 4.4. If P
η,δ,Top
−→ P ′, then P [N/x] =⇒∗ P ′[N/x] or P ′[N/x] =⇒∗ P [N/x]. Moreover, if the

expansion does not take place at the root of P , then there are no expansions at root positions in the

sequences P [N/x] =⇒∗ P ′[N/x] and P ′[N/x] =⇒∗ P [N/x].
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Proof.

— P
η
−→ λz.Pz. Then P is not a λ−abstraction, P ′[N/x] = λz.P [N/x]z and there are two possible

cases:

– If P [N/x] is not a λ−abstraction, P [N/x]
η
−→ λz.P [N/x]z since P is of type→ and so P [N/x]

is also of type → by lemma 3.6.

– If P [N/x] is a λ−abstraction, then P ≡ x, N ≡ λy.N ′ and:

(λz.xz)[λy.N ′/x] = λz.(λy.N ′)z
β
−→ λz.(N ′[z/y]) =α λy.N ′ = x[λy.N ′/x].

— P
δ
−→ 〈π1(P ), π2(P )〉. Then P is not a pair, P ′[N/x] = 〈π1(P [N/x]), π2(P [N/x])〉 and there are

two possible cases:

– If P [N/x] is not a pair, P [N/x]
δ
−→ 〈π1(P [N/x]), π2(P [N/x])〉 since P is of type × and so

P [N/x] is also of type × by lemma 3.6.

– If P [N/x] is a pair, then P ≡ x and N ≡ 〈N1, N2〉 and:
〈π1(x), π2(x)〉[〈N1, N2〉/x] x[〈N1, N2〉/x]

= =

〈π1(〈N1, N2〉), π2(〈N1, N2〉)〉
π1=⇒ 〈N1, π2(〈N1, N2〉)〉

π2=⇒ 〈N1, N2〉

— P
Top
−→ ∗. Then P [N/x]

Top
−→ ∗ = ∗[N/x] since P is of type T and so P [N/x] is also of type T by

lemma 3.6.

Using the previous Lemma, we can precisely describe the interaction between reductions and sub-

stitutions.

Lemma 4.5. (Substitution Lemma (i))

If P =⇒ P ′, then P [N/x] =⇒∗ P ′[N/x] or P ′[N/x] =⇒∗ P [N/x]. Moreover, if no expansion take place

at the root position of P , then there are no expansions at root positions in the reduction sequences

P [N/x] =⇒∗ P ′[N/x] and P ′[N/x] =⇒∗ P [N/x].

Proof. The property is shown by induction on the structure of P . We only show the argument of

the proof for Case as an illustration.

P ≡ Case(Q,M1,M2). If P
η,δ,Top
−→ P ′ the property holds by lemma 4.4. If not, there are five possibili-

ties:

— Q ≡ ini
B1+B2

(R) and Case(ini
B1+B2

(R),M1,M2)
ρ
=⇒∗MiR. Since

Case(ini
B1+B2

(R),M1,M2)[N/x] = Case(ini
B1+B2

(R[N/x]),M1[N/x],M2[N/x])

and this last term reduces by a ρ-rule to Mi[N/x]R[N/x] = (MiR)[N/x] the property holds.

— P ′ ≡ Case(Q′,M1,M2), where Q =⇒ Q′.

By induction hypothesis Q[N/x] =⇒∗ Q′[N/x] or Q′[N/x] =⇒∗ Q[N/x].

In the first case

Case(Q,M1,M2)[N/x] Case(Q′,M1,M2)[N/x]

= =

Case(Q[N/x],M1[N/x],M2[N/x]) =⇒∗ Case(Q′[N/x],M1[N/x],M2[N/x])

In the second case Case(Q′,M1,M2)[N/x] =⇒∗ Case(Q,M1,M2)[N/x].
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— P ′ ≡ Case(Q,M
′

1,M2), where M1 =⇒M
′

1. By induction hypothesis M1[N/x] =⇒∗M
′

1[N/x] or

M
′

1[N/x] =⇒∗M1[N/x].

In the first case

Case(Q,M1,M2)[N/x] Case(Q,M
′

1,M2)[N/x]

= =

Case(Q[N/x],M1[N/x],M2[N/x]) =⇒∗ Case(Q[N/x],M
′

1[N/x],M2[N/x])

In the second case Case(Q,M
′

1,M2)[N/x] =⇒∗ Case(Q,M1,M2)[N/x].

— P ′ ≡ Case(Q,M1,M
′

2), where M2 =⇒M
′

2. By induction hypothesis M2[N/x] =⇒∗M
′

2[N/x] or

M
′

2[N/x] =⇒∗M2[N/x].

In the first case

Case(Q,M1,M2)[N/x] Case(Q,M1,M
′

2)[N/x]

= =

Case(Q[N/x],M1[N/x],M2[N/x]) =⇒∗ Case(Q[N/x],M1[N/x],M
′

2[N/x])

In the second case Case(Q,M1,M
′

2)[N/x] =⇒∗ Case(Q,M1,M2)[N/x].

Lemma 4.6. (Substitution Lemma (ii))

If N
R
=⇒ N ′, then M [N/x] =⇒∗M ′′ ∗⇐= M [N ′/x] for some term M ′′. These reduction sequences

contain expansions at the root only if M ≡ x and R is an expansion applied at the root of N .

Proof. We will show that M [N/x] =⇒∗M ′′ ∗⇐= M [N ′/x] for some term M ′′ and that these

reduction sequences contain expansions at the root only if M ≡ x and R is an expansion applied at

the root of N .

This is a very common lemma in the theory of λ-calculus, where the term M ′′ is always M [N ′/x]

and the proof is straightforward context closure of the reduction R. Here the conditions imposed on

the expansion rules make it necessary to state the lemma this way. Effectively, the only interesting

cases of the proof are the ones for application and projections, where we cannot always apply context

closure for the reduction R, and have to make some steps backwards from M [N ′/x] to M [N/x].

Notice that every time the required reductions are built by context closure, there is no rule applied

at the root and we state this fact here once for all. We proceed by induction on M :

— M ≡ x

M [N/x] = N
R
=⇒ N ′ = M [N ′/x] (in this case our M ′′ is N ′)

— M ≡ y 6≡ x or M ≡ ∗ : T

Then M [N/x] = M = M [N ′/x] (in this case our M ′′ is M)

— M ≡ (M1M2)

We find by induction hypothesis terms M ′′
1 and M ′′

2 such that

M1[N/x] =⇒∗M ′′
1
∗⇐= M1[N

′/x], and M2[N/x] =⇒∗M ′′
2
∗⇐= M2[N

′/x].

Here M1 is in an influential position for η, so we have to be careful about the reductions occurring

in M1[N/x] =⇒∗M ′′
1
∗⇐= M1[N

′/x]. We have the following cases:

– If M1 6≡ x, or R is not an expansion at the root of N , we know by inductive hypothesis that the

reductions M1[N/x] =⇒∗M ′′
1
∗⇐= M1[N

′/x] do not contain any expansions, and in particular
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no η rule, at the root position, so we can apply context closure for application and get

(M1M2)[N/x]

=

(M1[N/x]M2[N/x]) =⇒∗ (M ′′
1 M

′′
2 )
∗⇐=

(M1M2)[N
′/x]

=

(M1[N
′/x]M2[N

′/x]).

– If M1 ≡ x, and the expansion rule R is η at the root of N , then N ′ ≡ λz.Nz and we can close

our diagram as follows

(x[N/x]M2[N/x])
=

(NM2[N/x])

(x[λz.Nz/x]M2[λz.Nz/x])
=

((λz.Nz)M2[λz.Nz/x])
‖
⇓

‖
⇓

(NM ′′
2 ) ⇐=====

β
========= (λz.Nz)M ′′

2

Here, the vertical reductions are built by context closure, while the horizontal one is a β, so no

expansion rule is applied at the root in the overall reduction sequence.

— M ≡ λz : A.M1

If x 6= z, the result follows from (λz : A.M1)[N/x] = λz : A.M1 = (λz : A.M1)[N
′/x]. Otherwise,

by induction hypothesis there is a term M ′′
1 such that M1[N/x] =⇒∗M ′′

1
∗⇐= M1[N

′/x], so we

can apply the context closure rule for abstraction and get that

(λz : A.M1)[N/x]

=

(λz : A.M1[N/x]) =⇒∗ λz : A.M ′′
1
∗⇐=

(λz.M1)[N
′/x]

=

(λz : A.M1[N
′/x])

— M ≡ πi(M1)

We find by induction hypothesis a term M ′′
1 such that

M1[N/x] =⇒∗M ′′
1
∗⇐= M1[N

′/x].

Here M1 is in an influential position for δ, so we have to be careful about the reductions occurring

in M1[N/x] =⇒∗M ′′
1
∗⇐= M1[N

′/x]. We have the following cases:

– If M1 6≡ x, or R is not an expansion at the root of N , we know by inductive hypothesis that the

reductions M1[N/x] =⇒∗M ′′
1
∗⇐= M1[N

′/x] do not contain any expansions, and in particular

no δ rule, at the root position, so we can apply context closure for projections and get

πi(M1)[N/x] =⇒∗ πi(M
′′
1 )
∗⇐= πi(M1)[N

′/x].

– If M1 ≡ x, and the expansion rule R is δ at the root of N , then N ′ ≡ 〈π1(N), π2(N)〉 and we

can close our diagram as follows

πi(x[N/x])

=

πi(N) ⇐=
πi

==

πi(x[〈π1N, π2N〉/x])

=

πi〈π1N, π2N〉

Here, the vertical reductions are built by context closure, while the horizontal one is a π, so

no expansion rule is applied at the root in the overall reduction sequence.

— M ≡ 〈M1,M2〉

We find by induction hypothesis terms M ′′
1 and M ′′

2 such that M1[N/x] =⇒∗M ′′
1
∗⇐= M1[N

′/x]
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and M2[N/x] =⇒∗M ′′
2
∗⇐= M2[N

′/x]. So, we can apply the context closure rule for application

and get that

(〈M1,M2〉)[N/x]
=

〈M1[N/x],M2[N/x]〉

(〈M1,M2〉)[N
′/x]

=
〈M1[N

′/x],M2[N
′/x]〉

∗‖
⇓

‖
⇓
∗

〈M ′′
1 ,M

′′
2 〉 = 〈M ′′

1 ,M
′′
2 〉

— M ≡ ini
C(M1)

We find by induction hypothesis a term M ′′
1 such that M1[N/x] =⇒∗M ′′

1
∗⇐= M1[N

′/x]. so we

can apply the context closure rule for ini and get that

ini
C(M1[N/x])

=

ini
C(M1)[N/x] =⇒∗ ini

C(M
′′
1 )
∗⇐=

ini
C(M1[N

′/x])

=

ini
C(M1)[N

′/x]

— M ≡ Case(P,M1,M2)

We find by induction hypothesis P ′′, M ′′
1 and M ′′

2 such that P [N/x] =⇒∗ P ′′ ∗⇐= P [N ′/x] and

M1[N/x] =⇒∗M ′′
1
∗⇐= M1[N

′/x] and M2[N/x] =⇒∗M ′′
2
∗⇐= M2[N

′/x]. So, we can apply the

context closure rule for Case and get that

Case(P,M1,M2)[N/x]
=

Case(P [N/x],(M1)[N/x],(M2)[N/x])

Case(P,M1,M2)[N
′/x]

=
Case(P [N ′/x],(M1)[N ′/x],(M2)[N ′/x])

∗‖
⇓

‖
⇓
∗

Case(P ′′,M ′′
1 ,M

′′
2 ) = Case(P ′′,M ′′

1 ,M
′′
2 )

— M ≡ (rec z : A.M1)
i

We assume z 6≡ x (otherwise the result trivially holds). We find by induction hypothesis a term

M ′′
1 such that M1[N/x] =⇒∗M ′′

1
∗⇐= M1[N

′/x]. so we can apply the context closure rule for rec

and get that

(rec z : A.M1)
i[N/x]

=

(rec z : A.M1[N/x])i =⇒∗ (rec z : A.M ′′
1 )

i ∗⇐=

(rec z : A.M1)
i[N ′/x]

=

(rec z : A.M1[N
′/x])i

Example 4.7. Take M = 〈xy, x〉, N = w and N ′ = λz : A.wz. Then

M [N/x] = 〈wy,w〉 =⇒ 〈wy, λz : A.wz〉 ⇐=〈(λz : A.wz)y, λz : A.wz〉 = M [N ′/x]

Looking carefully through the proof of the previous Lemma 4.6, one can see that the only cases

where it is needed to apply a reverse reduction are those corresponding to an expansion rule applied

at the root of N and to the presence in M of some free occurrences of x in influential positions. So,

we can also state the following

Corollary 4.8. (Reverse reductions) Let N
R
=⇒ N ′. In case R is not an expansion rule applied at

the root of N (an external expansion rule) or x does not occur at an influential position in M , then

M [N/x] =⇒∗M [N ′/x]
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Lemma 4.5 and 4.6 suffice to prove that all critical pairs arising from a term M by a β-reduction

and another reduction rule can be solved. We can then state the following:

Proposition 4.9. (Critical Pairs are solvable)

If M →M ′ and M =⇒M ′′, then ∃R such that M ′ =⇒∗ R and M ′′ =⇒∗ R.

Proof. One considers all cases of reduction from M to M ′. We show here only some interesting

cases, since confluence for the other cases is shown in many of the mentioned references, and full

details are given in (DCK93b).

1. M
β
−→M ′. Thus M ≡ (λx.P )N .

1.1. If M =⇒M ′′ is internal, there are two cases:

— P =⇒ P ′

(λx.P )N ===⇒ (λx.P ′)N

β
∨

β
∨

P [N/x] P ′[N/x]

By lemma 4.5 we have P [N/x] =⇒∗ P ′[N/x] or P ′[N/x] =⇒∗ P [N/x].

— N =⇒ N ′

(λx.P )N ===⇒ (λx.P )N ′

β
∨

β
∨

P [N/x] P [N ′/x]

By lemma 4.6 there is a term R such that P [N/x] =⇒∗ R and P [N ′/x] =⇒∗ R.

1.2. If M =⇒M ′′ is external the interesting cases involve η and δ :

1.2.1. M ≡ (λx.P )N
η
−→ λy.((λx.P )N)y ≡M ′′

—If P [N/x] is not a λ−abstraction:

(λx.P )N
η
> λy.((λx.P )N)y

β
∨

β‖
⇓

P [N/x]
η

> λy.P [N/x]y

—If P [N/x] is a λ−abstraction we have two cases:

– If P is a λ−abstraction:

(λx.(λz.P ′))N
η
> λy.((λx.(λz.P ′))N)y

β

∨

β‖
⇓

λy.((λz.P ′)[N/x])y

=

(λz.P ′)[N/x] λy.(λz.(P ′[N/x])y)

= β‖
⇓

λz.(P ′[N/x]) = λy.P ′[N/x][y/z]
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– If P = x and N is a λ−abstraction λz.N ′:

(λx.x)λz.N ′
η
> (λy.((λx.x)λz.N ′)y)

β

∨

β‖
⇓

λy.(λz.N ′)y

β‖
⇓

λz.N ′ = λy.N ′[y/z]

1.2.2. M ≡ (λx.P )N
δ
−→ 〈π1((λx.P )N), π2((λx.P )N)〉 ≡M ′′

—If P [N/x] is not a pair we have:

(λx.P )N
δ
> 〈π1((λx.P )N), π2((λx.P )N)〉

β

∨

β‖
⇓

〈π1(P [N/x]), π2((λx.P )N)〉

β‖
⇓

P [N/x]
δ

> 〈π1(P [N/x]), π2(P [N/x])〉

—If P [N/x] is a pair we have two more cases:

– P is also a pair 〈P1, P2〉:

(λx.〈P1, P2〉)N
δ
> 〈π1((λx.〈P1, P2〉)N), π2((λx.〈P1, P2〉)N)〉

β

∨

β‖
⇓

〈π1(〈P1, P2〉[N/x]), π2((λx.〈P1, P2〉)N)〉

β‖
⇓

〈π1(〈P1, P2〉[N/x]), π2(〈P1, P2〉[N/x])〉

π1‖
⇓

〈P1[N/x], P2[N/x]〉 ⇐=
π2
======== 〈P1[N/x], π2(〈P1, P2〉[N/x])〉

– P = x and N is a pair 〈N1, N2〉:
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(λx.x)〈N1, N2〉
δ
> 〈π1((λx.x)〈N1, N2〉), π2((λx.x)〈N1, N2〉)〉

β

∨

β‖
⇓

〈π1(〈N1, N2〉), π2((λx.x)〈N1, N2〉)〉

β‖
⇓

〈π1(〈N1, N2〉), π2(〈N1, N2〉)〉

π1‖
⇓

〈N1, N2〉 ⇐===
π2
============= 〈N1, π2(〈N1, N2〉)〉

2. M
η
−→M ′.

2.1. If M =⇒M ′′ is internal, then the same reduction can be performed on λz.Mz, and the out-

ermost term constructor of M and M ′′ does not change, so an expansion is still possible on

M ′′, and we can generally close the diagram as follows:

M ========⇒ M
′′

η
∨

η∨

λz.Mz ===⇒ λz.(M
′′

)z

2.2. If M =⇒M ′′ is external, the interesting cases are:

2.2.1. M
πi−→M ′′. Then M ≡ πi(〈M1,M2〉) and there are two cases:

— If Mi is not a λ−abstraction, the diagram looks like:

πi(〈M1,M2〉)
πi

> Mi

∨
η

∨
η

λz.πi(〈M1,M2〉)z ==
πi
=⇒ λz.Miz

—If Mi is a λ−abstraction λy.M
′

i , the diagram looks like:

πi(〈M1,M2〉)
πi
> λy.M

′

i

∨
η

λz.πi(〈M3,M2〉)z

πi‖
⇓

λz.(λy.M
′

i )z

β‖
⇓

λz.(M
′

i [z/y]) =

2.2.2. M
rec
−→M ′′. Then M = (rec y.M1)

i and there are two possible cases:
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— If M1 is not a λ−abstraction:

(rec y.M1)
i rec

> M1[(rec y.M1)
i−1/y]

η
∨

η
∨

λz.(rec y.M1)
iz ==

rec
=⇒ λz.(M1[(rec y.M1)

i−1/y])z

—If M1 ≡ λw.M
′

1:

(rec y.(λw.M
′

1))
i rec

> (λw.M
′

1)[(rec y.(λw.M
′

1))
i−1/y]

η∨

λz.(rec y.λw.M
′

1)
iz

rec‖
⇓

λz.(λw.M
′

1[(rec y.(λw.M
′

1))
i−1/y])z

β‖
⇓

λz.(M
′

1[(rec y.(λw.M
′

1))
i−1/y][z/w] =

3. M
δ
−→M ′.

3.1. If M =⇒M ′′ is internal, then the same reduction can be performed on 〈π1(M), π2(M)〉, and

the outermost term constructor of M and M ′′ does not change, so an expansion is still possible

on M ′′, and we can generally close the diagram as follows:

M ===============⇒ M
′′

δ
∨

δ∨

〈π1(M), π2(M)〉 ===⇒ 〈π1(M), π2(M
′′

)〉

3.2. If M =⇒M ′′ is external the interesting cases are:

3.2.1. M
πi−→M ′′. Then M ≡ πi(〈M1,M2〉).

— If Mi is not a pair:

πi(〈M1,M2〉)
δ
> 〈π1(πi(〈M1,M2〉)), π2(πi(〈M1,M2〉))〉

πi

∨

πi‖
⇓

〈π1(Mi), π2(πi(〈M1,M2〉))〉

πi‖
⇓

Mi
δ

> 〈π1(Mi), π2(Mi)〉

—If Mi is a pair 〈P1, P2〉:
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π1(〈M1,M2〉)
δ
> 〈π1(πi(〈M1,M2〉)), π2(πi(〈M1,M2〉))〉

πi

∨

πi‖
⇓

〈π1(〈P1, P2〉), π2(π1(〈M1,M2〉))〉

πi‖
⇓

〈π1(〈P1, P2〉), π2(〈P1, P2〉)〉

π1‖
⇓

〈P1, P2〉 ⇐===
π2
=========== 〈P1, π2(〈P1, P2〉)〉

3.2.2. M ≡ (rec y : C.P )i → P [(rec y : C.P )i−1/y] ≡M ′′ where P is a pair 〈P1, P2〉.

M ≡ (rec y : C.〈P1, P2〉)
i =========⇒ 〈P1, P2〉[M/y]

δ
∨

〈π1(M), π2(M)〉

‖
⇓
rec

〈π1(〈P1, P2〉[M/y]), π2(M)〉

‖
⇓
rec

〈π1(〈P1, P2〉[M/y]), π2(〈P1, P2〉[M/y])〉

‖
⇓
π1

〈P1[M/y], π2(〈P1, P2〉[M/y])〉

‖
⇓
π2

〈P1[M/y], P2[M/y]〉 =

4.3. From Solved Critical Pairs to Full Weak Confluence

It is to be noted that the solvability of critical pairs we just proved as Proposition 4.9 does not allow

us to deduce the weak confluence of the calculus via the famous Knuth-Bendix Critical Pairs Lemma.

That Lemma only deals with algebraic rewrite systems, and cannot be used for our calculus, that

has the higher order rewrite rule β. We need to prove local confluence explicitly, and to do so the

following remark is useful.

Remark 4.10. (Expansion rules) In case the two reductions M ′ ←−M =⇒M ′′ do not involve η

(resp. δ) rules applied at the root positions of M , it is possible to close the diagram without using η

(resp. δ) rules at the root, except in the three cases shown below: external πi’s and internal η, external
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β and internal δ. Notice that M is not a λ- abstraction in the first diagram, N is not a λ- abstraction

in the second and M [N/x] is not a pair in the third one.

π1(〈M,N〉) ==
η
=⇒ π1(〈λx.Mx,N〉)

π
∨

‖
⇓
π

M ======
η
=====⇒ λx.Mx

π2(〈M,N〉) ==
η
=⇒ π2(〈M,λx.Nx〉)

π
∨

‖
⇓
π

N ======
η
=====⇒ λx.Nx

(λx : A.M)N ==
δ
=⇒ (λx : A.〈π1(M), π2(M)〉)N

β
∨

‖
⇓
β

M [N/x] ====
δ
=⇒ 〈π1(M [N/x]), π2(M [N/x])〉

With this additional knowledge, we can prove that =⇒ is actually weakly confluent.

Theorem 4.11. (Weak Confluence) If M ′ ⇐=M =⇒M ′′ then there exist a term M ′′′ such that

M ′ =⇒∗M ′′′ ∗⇐= M ′′ (i.e. the reduction relation =⇒ is weakly confluent). Furthermore, if the

reductions in M ′ ⇐=M =⇒M ′′ do not contain η (resp. δ) rules applied at the root of M , it is

possible also to close the diagram without applying η (resp. δ) rules at the root, except in the cases

shown in the previous Remark 4.10.

Proof. We will prove that there exists a term M ′′′ such that M ′ =⇒∗M ′′′ ∗⇐= M ′′, by induction

on the derivation of M =⇒M ′. First of all, we remark that if one of the two one-step reductions

M =⇒M ′ and M =⇒M ′′ is actually an external reduction M
M
−→

′
and M

M
−→

′′
, then the result

comes directly from Proposition 4.9. So we will need to consider in the following only the cases where

both reductions are internal reductions.

We proceed now by cases on the last rule used to derive M =⇒M ′.

— M ≡ (M1M2) =⇒ (M ′
1M2) ≡ M ′ comes from M1 =⇒M ′

1. In this case, the η rule cannot be

applied at the root position of M1 because M1 is evaluated. Then we have two cases:

– the reduction M ≡ (M1M2) =⇒ (M ′′
1 M2) ≡M ′′ comes from a reduction M1 =⇒M ′′

1 . Now we

have to consider two cases:

• M ′
1 ⇐=M1 =⇒M ′′

1 is not one of the exceptional cases for η of the Remark 4.10: then we

know that there are no η at the root position in M ′
1 =⇒∗M ′′′

1
∗⇐= M ′′

1 . By induction

hypothesis we get a term M ′′′
1 that can be used to close the diagram M ′

1 ⇐=M1 =⇒M ′′
1

via M ′
1 =⇒∗M ′′′

1
∗⇐= M ′′

1 , and we can close our original diagram with

M ′ ≡ (M ′
1M2) =⇒∗ (M

′′′
1 M2) ∗⇐= (M ′′

1 M2) ≡M ′′
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• M ′
1 ⇐=M1 =⇒M ′′

1 is one of the exceptional cases for η, hence M1 is π1(〈P,Q〉) for some

terms P and Q. We can still close the original diagram as follows:

(π1(〈P,Q〉))M2 ==
η
=⇒ (π1(〈λx.Px,Q〉))M2

‖
‖
‖

‖
⇓
π

π ‖
‖
‖
⇓

(λx.Px)M2

‖
⇓
β

PM2 ≡ PM2

(π2(〈P,Q〉))M2 ==
η
=⇒ (π2(〈P, λx.Qx〉))M2

‖
‖
‖

‖
⇓
π

π ‖
‖
‖
⇓

(λx.Qx)M2

‖
⇓
β

QM2 ≡ QM2

– the reduction M ≡ (M1M2) =⇒ (M1M
′′
2 ) ≡M ′′ comes from a reduction M2 =⇒M ′′

2 . We can

close the diagram using the same original reductions,

M ′ ≡ (M ′
1M2) =⇒ (M ′

1M
′′
2 )⇐=(M1M

′′
2 ) ≡M ′′

because we know that η is not applied to M1 to get to M ′
1.

— M ≡ (M1M2) =⇒ (M1M
′
2) ≡M ′ comes from M2 =⇒M ′

2. Then we have two cases:

– the reduction M ≡ (M1M2) =⇒ (M1M
′′
2 ) ≡ M ′′ comes from a reduction M2 =⇒M ′′

2 . By

induction hypothesis we get a term M ′′′
2 that can be used to close M ′

2 ⇐=M2 =⇒M ′′
2 via

M ′
2 =⇒∗M ′′′

2
∗⇐= M ′′

2 . Now M ′ ≡ (M1M
′
2) =⇒

∗ (M1M
′′′
2 ) ∗⇐= (M1M

′′
2 ) ≡ M ′′ can be used

to close our original diagram.

– the reduction M ≡ (M1M2) =⇒ (M ′′
1 M2) ≡ M ′′ comes from a reduction M1 =⇒M ′′

1 . In this

case, we know that η cannot be applied at the top to M1 to get to M ′′
1 because M1 is evaluated.

So, we can close the diagram using the same original reductions as follows:

M ′ ≡ (M1M
′
2) =⇒ (M ′′

1 M
′
2)⇐=(M ′′

1 M2) ≡M ′′

— M ≡ (πi(M1)) =⇒ (πi(M
′
1)) ≡ M ′ comes from M1 =⇒M ′

1 and M ≡ (πi(M1)) =⇒ (πi(M
′′
1 )) ≡

M ′′ comes from M1 =⇒M ′′
1 . Then neither M1 =⇒M ′

1 nor M1 =⇒M ′′
1 can use δ rules at the root

of M because it is projected.

Now we have two cases:

– M1 =⇒M ′
1 and M1 =⇒M ′′

1 are not the exceptional cases for δ of Remark 4.10. By induction

hypothesis there is an M ′′′
1 s.t. M ′

1 =⇒∗M ′′′
1
∗⇐= M ′′

1 without δ rules at the root, and we can

close our diagram by πi(M
′
1) =⇒

∗ πi(M
′′′
1 ) ∗⇐= πi(M

′′
1 ).

– M1 =⇒M ′
1 and M1 =⇒M ′′

1 is the exceptional case for δ, so M1 ≡ (λx.P )Q for some terms P

and Q. We can still close our original diagram as follows:

πi((λx.P )Q) ==
δ
===⇒ πi((λx.〈π1(P ), π2(P )〉)Q)

‖
⇓
β

β

∨

πi(〈π1(P [Q/x]), π2(P [Q/x])〉)

‖
⇓
π

πi(P [Q/x]) ===
δ
=========⇒ πi(P [Q/x])
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— M ≡ λx.M1 =⇒ λx.M ′
1 ≡ M ′ comes from M1 =⇒M ′

1 and M ≡ λx.M1 =⇒ λx.M ′′
1 ≡ M ′′ comes

from M1 =⇒M ′′
1 . By induction hypothesis there is an M ′′′

1 s.t. M ′
1 =⇒∗M ′′′

1
∗⇐= M ′′

1 and we can

close our diagram by λx.M ′
1 =⇒∗ λx.M ′′′

1
∗⇐= λx.M ′′

1 .

— M ≡ 〈M1,M2〉 =⇒ 〈M
′
1,M2〉 ≡M ′ comes from M1 =⇒M ′

1. Now we have to consider two cases:

– the reduction M ≡ 〈M1,M2〉 =⇒ 〈M1,M
′′
2 〉 ≡ M ′′ comes from a reduction M2 =⇒M ′′

2 . By

induction hypothesis there is a term M ′′′
1 s.t. we can close the diagram M ′

1 ⇐=M1 =⇒M ′′
1 via

M ′
1 =⇒∗M ′′′

1
∗⇐= M ′′

1 , and we can close our original diagram with

M ′ ≡ 〈M ′
1,M2〉 =⇒∗ 〈M

′′′
1 ,M2〉 ∗⇐= 〈M

′′
1 ,M2〉 ≡M ′′

– the reduction M ≡ 〈M1,M2〉 =⇒ 〈M1,M
′′
2 〉 ≡ M ′′ comes from a reduction M2 =⇒M ′′

2 . We

can close the diagram using the same original reductions,

M ′ ≡ 〈M1,
′M2〉 =⇒ 〈M

′
1,M

′′
2 〉 ⇐=〈M1,M

′′
2 〉 ≡M ′′

— M ≡ ini
C(M1) =⇒ ini

C(M
′
1) ≡ M ′ comes from M1 =⇒M ′

1 and M ≡ ini
C(M1) =⇒ ini

C(M
′′
1 ) ≡

M ′′ comes from M1 =⇒M ′′
1 . By induction hypothesis there is an M ′′′

1 s.t. M ′
1 =⇒∗M ′′′

1
∗⇐= M ′′

1

and we can close our diagram by ini
C(M

′
1) =⇒

∗ ini
C(M

′′′
1 ) ∗⇐= ini

C(M
′′
1 ).

— M ≡ rec x : A.M1 =⇒ rec x : A.M ′
1 ≡M ′ comes fromM1 =⇒M ′

1 andM ≡ rec x : A.M1 =⇒ rec x :

A.M ′′
1 ≡ M ′′ comes from M1 =⇒M ′′

1 . Then we can find by induction hypothesis an M ′′′
1 s.t.

M ′
1 =⇒∗M ′′′

1
∗⇐= M ′′

1 and we can close our diagram by rec x : A.M ′
1 =⇒∗ rec x : A.M ′′′

1
∗⇐= rec x :

A.M ′′
1 .

— We are left to consider the case of M ≡ Case(P,M1,M2).

– To avoid a mechanical repetition of similar proofs, notice that if the internal reduction to M ′

and M ′′ are performed on different subterms, then we can close the diagram by commuting

the two reductions. We show just one case.

Case(P,M1,M2) ===
R2
=⇒ Case(P,M ′

1,M2)

R1‖
⇓

‖
⇓
R1

Case(P ′,M1,M2) ==
R2
=⇒ Case(P ′,M ′

1,M2)

– If the internal reduction to M ′ and M ′′ are performed on the same subterm Q, say for example

Q′ ⇐=
R1
== Q ==

R2
=⇒ Q′′, then there is a Q′′′, by induction hypothesis, s.t. Q′ =⇒∗ Q′′′ ∗⇐= Q′′,

and we can close the diagram by extending these last reductions to the Case expression. Again,

we detail just one case.

Case(P,M1,M2) ===
R2
=⇒ Case(P ′′,M1,M2)

R1‖
⇓

‖
⇓

Case(P ′,M1,M2) ===⇒ Case(P ′′′,M ′
1,M2)
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5. Strong Normalization

We provide in this section the proof of strong normalization for our calculus. The key idea is to reduce

strong normalization of the system with expansion rules to that of the system without expansion rules

and for this, we show how the calculus without expansions can be used to simulate the calculus with

expansions. We will use a fundamental property relating strong normalization of two systems:

Proposition 5.1. Let R1 and R2 be two reduction systems and T a translation from terms in R1 to

terms in R2. If for every reduction M1
R1=⇒M2 there is a non empty reduction sequence P1

R2=⇒+P2

such that T (Mi) = Pi, for i = 1, 2, then the strong normalization of R2 implies that of R1.

Proof. Suppose R2 is strongly normalizing and R1 is not. Then there is an infinite reduction

sequence M1
R1=⇒M2

R1=⇒ . . . and from this reduction we can construct an infinite reduction sequence

T (M1)
R2=⇒+T (M2)

R2=⇒+ . . . which leads to a contradiction.

The goal is now to find a translation of terms mapping our calculus into itself such that for every

possible reduction in the original system from a term M to another term N , there is a reduction

sequence from the translation of M to the translation of N , that is non empty and does not contain

any expansion. Then the previous proposition allows us to derive the strong normalization property

for the full system from that of the system without expansion rules, which can be proved using

standard techniques.

5.1. Simulating Expansions without Expansions

The first näıve idea that comes to the mind is to choose a translation such that expansion rules are

completely impossible on a translated term. This essentially amounts to associate to a term M its η-δ

normal form, so that translating a term corresponds then to executing all the possible expansions.

Unfortunately, this simple solution is not a good one: if M reduces to N via an expansion, then

the translation of M and that of N are the same term, so to such a reduction step in the full system

corresponds an empty reduction sequence in the translation, and this does not allow us to apply

proposition 5.1.

This leads us to consider a more sophisticated translation that maps a term M to a term M◦ where

expansions are not fully executed as above, but just marked in such a way that they can be executed

during the simulation process, if necessary, by a rule that is not an expansion.

Let us see how to do this on a simple example: take a variable z of type A1 × A2, where the Ai’s

are atomic types different from T. By performing a δ expansion we obtain its normal form w.r.t.

expansion rules: 〈π1(z), π2(z)〉. Instead of executing this reduction, we just mark it in the translation

by applying to z an appropriate expansor term λx : A1 × A2.〈π1(x), π2(x)〉. As for 〈π1(z), π2(z)〉, it

is in normal form w.r.t. expansions, so the translation does not modify it in any way. Now, we have

the reduction sequence

z◦ ≡ (λx : A1 ×A2.〈π1(x), π2(x)〉)z →β 〈π1(z), π2(z)〉 ≡ 〈π1(z), π2(z)〉
◦

where the translation of z reduces to the translation of 〈π1(z), π2(z)〉, and the δ expansion from z to

〈π1(z), π2(z)〉 is simulated in the translation by a β-rule. Clearly, in a generic term M there are many
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positions where an expansion can be performed, so the translation will have to take into account the

structure of M and insert the appropriate expansors at all these positions‖.

Anyway, expansors must be carefully defined to correctly represent not only the expansion step

arising from a redex already present in M , but also all the expansion sequences that such step can

create: if in the previous example the type A1 is taken to be an arrow type and the type A2 a product

type, then the term π1(z) can be further η-expanded and the term π2(z) can be expanded by a δ-rule,

and the expansor λx : A1 ×A2.〈π1(x), π2(x)〉 cannot simulate these further possible reductions. This

can only be done by storing in the expansor terms all the information on possible future expansions,

that is fully contained in the type of the term we are marking.

Definition 5.2. (Translation) To every type C we associate a term, called the expansor of type C

and denoted ∆C , defined by induction as follows:

∆A→B = λx : A→ B.λz : A.∆B(x(∆Az))

∆A×B = λx : A×B.〈∆A(π1(x)),∆B(π2(x))〉

∆A is empty, in any other case

We then define a translation M◦ for a term M : A as follows:

M◦ =

{
M◦◦ if M is a λ-abstraction or a pair

∆k
AM

◦◦ for any k > 0 otherwise

where ∆k
AM denotes the term (∆A . . . (∆A

︸ ︷︷ ︸

k times

M) . . .) and M◦◦ is defined by induction as:

x◦◦ = x (λx : B.M)◦◦ = λx : B.M◦

∗◦◦ = ∗ (rec y : A.M)i
◦◦

= (rec y : A.M◦)i

〈M,N〉◦◦ = 〈M◦, N◦〉 Case(R,M,N)◦◦ = Case(R◦,M◦, N◦)

(MN)◦◦ = (M◦◦N◦) πi(M)◦◦ = πi(M
◦◦)

ini
C(M)◦◦ = ini

C(M
◦)

This corresponds exactly to the marking procedure described before, but for a little detail: in the

translation we allow any number of markers to be used (the integer k can be any positive number),

and not just one as seemed to suffice for the examples above.

The need for this additional twist in the definition is best understood with an example. Consider

two atomic types A and B and the term (λx : A×B.x)z: if k is fixed to be one (i.e. we allow only one

expansor as marker) then its translation ((λx : A× B.x)z)◦ is ∆A×B((λx : A× B.∆A×Bx)∆A×Bz).

Now (λx : A×B.x)z
β
−→ z, so we have to verify that ((λx : A×B.x)z)◦ reduces to z◦ in at least one

step. We have:

∆A×B((λx : A×B.∆A×Bx)∆A×Bz) =⇒ ∆A×B∆A×B∆A×Bz

However, even if both ∆3
A×Bz and ∆A×Bz reduce to the same term 〈π1(z), π2(z)〉, it is not true that

∆3
A×Bz =⇒∗ ∆A×Bz. Anyway, if we admit ∆3

A×Bz as a possible translation of z we will have the

desired property relating reductions and translations. Hence, to be precise, our method associates

‖ Notice that we cannot insert expansors in influential positions: if a term M is expanded, say to 〈π1(M), π2(M)〉,

then its root becomes an influential position, and we cannot insure that the translation of M reduces to a translation
of 〈π1(M), π2(M)〉: expansors get used, and after some reduction steps we end up with a naked pair not preceded
by an expansor.
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to each term not just one translation, but a whole family of possible translations, all with the same

structure, but with different numbers of expansors used as markers.

What is important for our proof is that when we are given a reduction M1 =⇒M2 . . . =⇒Mn in

the full calculus, then no matter which possible translation M◦
1 we choose for M1, the reductions used

in the simulation process all go through possible translations M◦
i of the Mi.

Translations preserve types and leave unchanged terms where expansions are not possible.

Lemma 5.3. If Γ ⊢M : A, then Γ ⊢ (∆AM) : A.

Proof. By induction on the structure of A.

— If A is neither a functional, nor a product type, then ∆A is empty and the property trivially holds.

— A ≡ B → C. Since Γ, x : B → C, z : B ⊢ z : B, we have by induction hypothesis Γ, x : B → C, z :

B ⊢ (∆Bz) : B

Γ, x : B → C, z : B ⊢ x : B → C Γ, x : B → C, z : B ⊢ (∆Bz) : B

Γ, x : B → C, z : B ⊢ (x(∆Bz)) : C

Again by induction hypothesis Γ, x : B → C, z : B ⊢ ∆C(x(∆Bz)) : C and thus:

Γ, x : B → C, z : B ⊢ ∆C(x(∆Bz)) : C

Γ, x : B → C ⊢ λz : B.∆C(x(∆Bz)) : B → C

Γ ⊢ λx : B → C.λz : B.∆C(x(∆Bz)) : (B → C)→ (B → C)

Γ ⊢M : B → C

Γ ⊢ (∆B→CM) : B → C

— A ≡ B×C. Since Γ, x : B×C ⊢ x : B×C, then Γ, x : B×C ⊢ π1(x) : B and Γ, x : B×C ⊢ π2(x) : C.

By induction hypothesis Γ, x : B × C ⊢ ∆Bπ1(x) : B and Γ, x : B × C ⊢ ∆Cπ1(x) : C.

Γ, x : B × C ⊢ ∆Bπ1(x) : B Γ, x : B × C ⊢ ∆Cπ2(x) : C

Γ, x : B × C ⊢ 〈∆Bπ1(x),∆Cπ2(x)〉 : B × C

Γ ⊢ λx : B × C.〈∆Bπ1(x),∆Cπ2(x)〉 : (B × C)→ (B × C)

Γ ⊢M : B × C

Γ ⊢ ∆B×CM : B × C

Corollary 5.4. If Γ ⊢M : A, then Γ ⊢ ∆k
AM : A, for any k ≥ 0.

Lemma 5.5. (Type Preservation) If Γ ⊢M : A, then Γ ⊢M◦ : A and Γ ⊢M◦◦ : A.

Proof. By induction on the structure of M , using corollary 5.4.

A term M is in quasi-normal form if only expansion rules at the root position are applicable to it

and M is in normal form if no rule is applicable to it. So, every normal form is in quasi-normal form,

while the converse does not necessarily hold.

Lemma 5.6.

1 If M is in normal form, then M◦ = M
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2 If M is in quasi-normal form, then M◦◦ = M

Proof. By induction on the structure of M .

— M ≡ ∗.

1 ∗◦ = ∗.

2 The property vacuously holds because ∗ is a normal form.

— M ≡ x.

1 Since x is in normal form, it has neither a functional, nor a product, nor the T type and then

∆A is empty, where A is the type of x. Then x◦ = x.

2 x◦◦ = x by definition.

— M ≡ λx : A.P .

1 Since M is in normal form, P is also in normal form and by induction hypothesis P ◦ = P . We

have (λx : A.P )◦ = λx : A.P ◦ = λx : A.P .

2 If λx : A.P is in quasi-normal form, it is also in normal form because we cannot apply an

expansion rule to a lambda-term. By the previous paragraph (λx : A.P )◦◦ = λx : A.P .

— M ≡ 〈P,Q〉.

1 Since M is in normal form, P and Q are also in normal form and by induction hypothesis

P ◦ = P and Q◦ = Q. We have 〈P,Q〉◦ = 〈P ◦, Q◦〉 = 〈P,Q〉.

2 If 〈P,Q〉 is in quasi-normal form, it is also in normal form because we cannot apply an expansion

rule to a pair. By the previous paragraph 〈P,Q〉◦◦ = 〈P,Q〉.

— M ≡ (rec y : A.P )i.

– If i = 0, then

1 Since M is in normal form, P is also in normal form and by induction hypothesis P ◦ = P .

On the other hand, M has neither a functional, nor a product, nor the T type and then

∆A is empty, where A is the type of M . We have ((rec y : A.P )0)◦ = ∆k
A(rec y : A.P ◦)0 =

(rec y : A.P )0.

2 Since M is in quasi normal form, P is in normal form and by induction hypothesis P ◦ = P .

Then ((rec y : A.P )0)◦ = (rec y : A.P ◦)0 = (rec y : A.P )0.

– If i > 0, then

1 The property vacuously holds because (rec y : A.P )i is not in normal form.

2 The property vacuously holds because (rec y : A.P )i is not in quasi-normal form.

— M ≡ (PQ).

1 Suppose A is the type of M . Since M is in normal form, A is neither a functional, nor a

product, nor the T type and so ∆A is empty. On the other hand P is in quasi-normal form

and Q is in normal form, so by induction hypothesis P ◦◦ = P and Q◦ = Q. We have (PQ)◦ =

∆k
A(P

◦◦Q◦) = (PQ).

2 Since M is in quasi-normal form, P is in quasi-normal form and Q is in normal form and by

induction hypothesis P ◦◦ = P and Q◦ = Q. We have (PQ)◦◦ = (P ◦◦Q◦) = (PQ).

— M ≡ Case(P,R,N).
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1 Suppose A is the type ofM . SinceM is in normal form, A is neither a functional, nor a product,

nor the T type and so ∆A is empty. On the other hand P , R and N are in normal form and

by induction hypothesis P ◦ = P and R◦ = R and N◦ = R. We have Case(P,R,N)◦ =

∆k
A Case(P ◦, R◦, N◦) = Case(P,R,N).

2 Since M is in quasi-normal form, P,R and N are in normal form and by induction hypoth-

esis P ◦ = P and R◦ = R and N◦ = R. We have Case(P,R,N)◦◦ = Case(P ◦, R◦, N◦) =

Case(P,R,N).

— M ≡ πi(P ), for i = 1, 2.

1 Suppose A is the type of M . Since M is in normal form, A is neither a functional, nor a

product, nor the T type and so ∆A is empty. On the other hand P is in quasi-normal form

and by induction hypothesis P ◦◦ = P . We have πi(P )◦ = ∆k
A πi(P

◦◦) = πi(P ).

2 Since M is in quasi-normal form, P is also in quasi-normal form and by induction hypothesis

P ◦◦ = P . We have πi(P )◦◦ = πi(P
◦◦) = πi(P ).

— M ≡ ini
C(P ), for i = 1, 2.

1 Since M is in normal form, P is also in normal form and by induction hypothesis P ◦ = P . We

have ini
C(P )◦ = ini

C(P
◦) = ini

C(P ).

2 ini
C(P ) in quasi-normal form implies ini

C(P ) in normal form, and the property holds by the

previous paragraph.

The next step is to prove that we can apply proposition 5.1 to our system, i.e, for every one step

reduction from M to N in the full system, there is a non empty reduction sequence in the system

without expansions from any translation of M to a translation of N .

This lemma characterizes the reductions from a term ∆k
A→BM or ∆k

A×BM and is quite essential

in all the properties shown in this section.

Lemma 5.7. For any k > 0

∆k
A→BM=⇒+ λw : A.∆k

B(M(∆k
Aw)) and ∆k

A×BM=⇒+〈∆k
Aπ1(M),∆k

Bπ2(M)〉

and the reduction sequences contain no expansion steps.

Proof. By induction on k.

If k = 1, then

∆A→BM ≡ (λx : A→ B.λw : A.∆B(x(∆Aw)))M
β
−→ λw : A.∆B(M(∆Aw))

∆A×BM ≡ (λx : A×B.〈∆Aπ1(x),∆Bπ2(x)〉)M
β
−→ 〈∆Aπ1(M),∆Bπ2(M)〉

Only the β-rule is used in this reduction.

If k > 1, then
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∆k+1
A→BM = ∆k

A→B∆A→BM

⇓β

∆k
A→Bλw : A.∆B(M(∆Aw))

⇓+ by induction hypothesis (and without expansions steps)

λw : A.∆k
B(λw : A.∆B(M(∆Aw))(∆

k
Aw))

⇓β

λw : A.∆k
B(∆B(M(∆A∆

k
Aw))) = λw : A.∆k+1

B (M(∆k+1
A w))

∆k+1
A×BM = ∆k

A×B(∆A×BM)

⇓β

∆k
A×B〈∆Aπ1(M),∆Bπ2(M)〉

⇓+ by induction hypothesis (and without expansion steps)

〈∆k
Aπ1(〈∆Aπ1(M),∆Bπ2(M)〉),∆k

Bπ2(〈∆Aπ1(M),∆Bπ2(M)〉)〉

⇓π1,π2

〈∆k
A∆Aπ1(M),∆k

B∆Bπ2(M)〉 = 〈∆k+1
A π1(M),∆k+1

B π2(M)〉

We use N⊗ to denote either N◦ or N◦◦. In particular, N⊗ will stand for a sequence of mixed N◦
i ’s

and N◦◦
i ’s.

Lemma 5.8. If Γ ⊢M : A, then for any substitution [z⊗/x] we have

1 ∃k ≥ 0, M◦◦[z⊗/x] =⇒∗ ∆k
A(M [z/x])◦◦

2 ∀k ≥ 0, ∆k
AM

◦[z⊗/x] =⇒∗ (M [z/x])◦

and no expansions are performed in these reduction sequences.

Proof. We show the two properties by induction on the structure of M . More precisely, for the first

statement we analyze each case, while for the second one it is enough to analyze those expressions

M such that M◦ = M◦◦. Indeed, once we have already shown the first statement, the second can be

easily shown in the following way for the expressions M such that M◦ = ∆h
AM

◦◦ (for h > 0):
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∆k
AM

◦[z⊗/x] =

∆k
A∆

h
AM

◦◦[z⊗/x] =⇒∗ (by the first statement)

∆k+h
A ∆m

AM [z/x]
◦◦

= (as h > 0)

M [z/x]
◦

Every reduction built in the following proof contains no expansion steps, as it is constructed from

one-step reductions that are not expansions or from reductions obtained by induction hypothesis

(and thus without expansions) or from reductions obtained by lemma 5.7 (again without expansions).

This remark will allow us to conclude that the reductions in the statements of the lemma contain no

expansion.

Now, let us analyze the first statement and the interesting cases of the second.

— M ≡ ∗. Since ∗ is of type T, ∆T is empty. We have

∗◦◦[z⊗/x] = ∗[z⊗/x] = ∗ = ∗◦◦ = ∆0
T∗

◦◦ = ∆0
T(∗[z/x])◦◦

— M ≡ xi ∈ x. There are two cases to consider: either z⊗ = z◦ or z⊗ = z◦◦.

– x◦◦
i [z⊗/x] = xi[z⊗/x] = z◦i = ∆m

A z◦◦i = ∆m
A (xi[z/x])

◦◦.

– x◦◦
i [z⊗/x] = xi[z⊗/x] = z◦◦i = (xi[z/x])

◦◦ = ∆0
A(xi[z/x])

◦◦.

— M ≡ y 6∈ x. We have y◦◦[z⊗/x] = y[z⊗/x] = y = ∆0
Ay

◦◦.

— M ≡ (PQ). We have (PQ)◦◦[z⊗/x] = (P ◦◦Q◦)[z⊗/x] = P ◦◦[z⊗/x]Q◦[z⊗/x].

By induction hypothesis P ◦◦[z⊗/x] =⇒∗ ∆h
B→AP [z/x]

◦◦

– If h = 0, then

P ◦◦[z⊗/x]Q◦[z⊗/x]

⇓∗ by induction hypothesis

P [z/x]
◦◦
Q◦[z⊗/x]

⇓∗ by induction hypothesis

P [z/x]
◦◦
Q[z/x]

◦
= (P [z/x]Q[z/x])◦◦ = ((PQ)[z/x])◦◦ = ∆0

A(PQ[z/x])◦◦

– If h > 0, then:
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∆h
B→AP [z/x]

◦◦
Q◦[z⊗/x]

⇓+ by lemma 5.7

(λw : B.∆h
A(P [z/x]

◦◦
(∆h

Bw)))Q
◦[z⊗/x]

⇓β

∆h
A(P [z/x]

◦◦
(∆h

B(Q
◦[z⊗/x])))

⇓∗ by induction hypothesis

∆h
A(P [z/x]

◦◦
Q[z/x]

◦
) = ∆h

A(P [z/x]Q[z/x])◦◦ = ∆h
A(PQ[z/x])◦◦

— M ≡ λy : B.P .

1 for the first statement,

(λy : B.P )◦◦[z⊗/x] = (λy : B.P ◦)[z⊗/x]

=

λy : B.P ◦[z⊗/x]

⇓∗ by induction hypothesis

λy : B.P [z/x]
◦
= (λy : B.P [z/x])◦◦ = ∆0

B→C((λy : B.P )[z/x])◦◦

2 for the second statement,

∆k
B→C(λy : B.P )◦[z⊗/x] = ∆k

B→C(λy : B.P ◦)[z⊗/x]

=

∆k
B→Cλy : B.P ◦[z⊗/x]

⇓+ by lemma 5.7

λw : B.∆k
B((λy : B.P ◦[z⊗/x])(∆k

Cw))

⇓β

λw : B.∆k
BP

◦[z⊗/x][w◦/y]

⇓∗ by induction hypothesis

λw : B.(P [z/x][w/y])◦ = (λw : B.P [z/x][w/y])◦ =α (λy : B.P [z/x])◦ = ((λy : B.P )[z/x])◦

— M ≡ πi(P ), for i = 1, 2.
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πi(P )◦◦[z⊗/x] = πi(P
◦◦)[z⊗/x]

=

πi(P
◦◦[z⊗/x])

⇓∗ by induction hypothesis

πi(∆
h
A1×A2

(P [z/x]
◦◦
)

– If h = 0, then

πi(P [z/x]
◦◦
) = πi(P [z/x])◦◦ = ∆0

Ai
πi(P [z/x])◦◦ = ∆0

Ai
(πi(P )[z/x])◦◦

– If h > 0, then

πi(∆
h
A1×A2

(P [z/x])◦◦)

⇓+ by lemma 5.7

πi(〈∆
h
A1

π1((P [z/x])◦◦),∆h
A2

π2((P [z/x])◦◦)〉)

⇓πi

∆h
Ai
πi((P [z/x])◦◦) = ∆h

Ai
πi(P [z/x])◦◦ = ∆h

Ai
(πi(P )[z/x])◦◦

— M ≡ ini
C(P ), for i = 1, 2 and then ∆C is empty.

ini
C(P )◦◦[z⊗/x] = ini

C(P
◦)[z⊗/x]

=

ini
C(P

◦[z⊗/x])

⇓∗ by induction hypothesis

ini
C(P [z/x]

◦
) = ∆0

Ain
i
C(P [z/x])◦◦ = ∆0

A(in
i
C(P )[z]/x])◦◦

— M ≡ 〈P,Q〉.

1 for the first statement,

〈P,Q〉◦◦[z⊗/x] = 〈P ◦, Q◦〉[z⊗/x]

=

〈P ◦[z⊗/x], Q◦[z⊗/x]〉

⇓∗ by induction hypothesis

〈P [z/x]
◦
, Q[z/x]

◦〉 = 〈P [z/x], Q[z/x]〉◦◦ = ∆0
A×B〈P [z/x], Q[z/x]〉◦◦ = ∆0

A×B(〈P,Q〉[z/x])
◦◦

2 for the second statement,

∆k
A×B〈P,Q〉

◦
[z⊗/x] = ∆k

A×B〈P
◦, Q◦〉[z⊗/x] = ∆k

A×B〈P
◦[z⊗/x], Q◦[z⊗/x]〉
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– If k = 0, then

〈P ◦[z⊗/x], Q◦[z⊗/x]〉

⇓∗ by induction hypothesis

〈P [z/x]
◦
, Q[z/x]

◦〉 = 〈P [z/x], Q[z/x]〉◦ = (〈P,Q〉[z/x])◦

– If k > 0, then

∆k
A×B〈P

◦[z⊗/x], Q◦[z⊗/x]〉

⇓+ by lemma 5.7

〈∆k
Aπ1(P

◦[z⊗/x]Q◦[z⊗/x]),∆k
Bπ2(〈P

◦[z⊗/x], Q◦[z⊗/x]〉)〉

⇓∗ π1, π2

〈∆k
AP

◦[z⊗/x],∆k
BQ

◦[z⊗/x]〉

⇓∗ by induction hypothesis

〈P [z/x]
◦
, Q[z/x]

◦〉 = 〈P [z/x], Q[z/x]〉◦ = (〈P,Q〉[z/x])◦

— M ≡ (rec y : A.P )i.

((rec y : A.P )i)◦◦[z⊗/x]

=

(rec y : A.P ◦)i[z⊗/x]

⇓∗ by induction hypothesis

(rec y : A.(P [z/x])◦)i = ∆0
A((rec y : A.P [z/x])i)◦◦ = ∆0

A((rec y : A.P )i[z/x])
◦◦

— M ≡ Case(P,Q,R).

Case(P,Q,R)◦◦[z⊗/x] = Case(P ◦, Q◦, R◦)[z⊗/x]

=

Case(P ◦[z⊗/x], Q◦[z⊗/x], R◦[z⊗/x])

⇓∗ by induction hypothesis

Case(P [z/x]
◦
, Q[z/x]

◦
, R[z/x]

◦
) = Case(P [z/x], Q[z/x], R[z/x])◦◦ = (Case(P,Q,R)[z/x])◦◦

=

∆0
A(Case(P,Q,R)[z/x])◦◦
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Corollary 5.9. If Γ ⊢ M : A, then ∀k ≥ 0, ∆k
AM

◦ =⇒∗ M◦ and no expansions are performed in

the reduction sequences.

The following property is essential to show that every time we perform a β-reduction on a term M

in the original system, any translation of M reduces to a translation of the term we have obtained

via →β from M . Take for example the reduction (λx : A.M)N →β M [N/x]. We know that ((λx :

A.M)N)◦ = ∆k
A((λx : A.M◦)N◦) and we want to show that there is a non empty reduction sequence

leading to M [N/x]
◦
. Since ∆k

A((λx : A.M◦)N◦) →β ∆k
AM

◦[N◦/x], we have now to check that the

term (M [N/x])◦ can be reached. We state the property as follows:

Lemma 5.10. If Γ ⊢M : A, then

1 ∃k ≥ 0, M◦◦[N⊗/x] =⇒∗ ∆k
A(M [N/x])◦◦

2 ∀k ≥ 0, ∆k
AM

◦[N⊗/x] =⇒∗ (M [N/x])◦

and no expansions are performed in the reduction sequences.

Proof. We show the two properties by induction on the structure of M . More precisely, for the first

statement one analyzes each case, while for the second one it is enough to analyze those expressions

M such that M◦ = M◦◦. Indeed, once we have already shown the first statement, the second can be

easily shown in the following way for the expressions M such that M◦ = ∆h
AM

◦◦ (for h > 0):

∆k
AM

◦[N⊗/x] =

∆k
A∆

h
AM

◦◦[N⊗/x] =⇒∗ (by the first statement)

∆k+h
A ∆m

AM [N/x]
◦◦

=⇒∗ (either by definition of M [N/x]
◦
or by corollary 5.9)

M [N/x]
◦

Now, the analysis of all the cases involved proceeds exactly as in lemma 5.8, except for the case

M ≡ xi, where to prove the second statement we need to proceed as follows:

∆k
Ax

◦
i [N

⊗/x] = ∆k
A(∆

m
Axi)[N⊗/x] = ∆k+m

A N⊗
i

Now, if N⊗
i is N◦

i , by corollary 5.9, ∆k+m
A N◦

i =⇒∗ N◦
i = (xi[N/x])◦ as required.

If instead N⊗
i is N◦◦

i , we have two cases:

— N◦
i = N◦◦

i , then by corollary 5.9 ∆k+m
A N◦

i =⇒∗ N◦
i = (xi[N/x])◦.

— otherwise, ∆k+m
A N◦◦

i = N◦
i = (xi[N/x])◦.

Notice that there are no expansions in these reduction sequences, because of corollary 5.9.

Lemma 5.11. If M
η,δ,Top
−→ N , then M◦¬δ,¬η

=⇒+N◦.

Proof.

— If M is of type A×B and M
δ
−→ 〈π1(M), π2(M)〉

We know that ∃k > 0 such that M◦ = ∆k
A×BM

◦◦. By corollary 5.7

∆k
A×BM

◦◦=⇒+ 〈∆k
Aπ1(M

◦◦),∆k
Bπ2(M

◦◦)〉

and the sequence has no expansion rules.

The last term is equal to 〈π1(M)◦, π2(M)◦〉 = 〈π1(M), π2(M)〉◦ and then the property holds.

— If M is of type A→ B and M
η
−→ λy : A.My
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We know that ∃k > 0 such that M◦ = ∆k
A→BM

◦◦. By corollary 5.7 ∆k
A→BM

◦◦=⇒+ λy :

A.∆k
B(M

◦◦(∆k
Ay)) and the the sequence has no expansion rules.

The last term is equal to λy : A.∆k
B(M

◦◦y◦) = λy : A.(My)◦ = (λy : A.My)◦ and then the

property holds.

— If M : T and M
Top
−→ ∗.

By lemma 5.5 M◦ : T and so M◦ Top
−→ ∗ = ∗◦.

Using 5.10 we can show now:

Theorem 5.12. (Simulation) If Γ ⊢M : A and M =⇒ N , then

1 ∃k ≥ 0 such that M◦◦=⇒+∆k
AN

◦◦ if not M
η,δ
−→ N

2 M◦=⇒+N◦

and there are no expansions in these reduction sequences.

Proof. We show the property by induction on the structure of M . More precisely, for the first

statement we analyze each case, while for the second there are two cases:

— if M
η,δ
−→ N , then apply lemma 5.11

— if not M
η,δ
−→ N , then it is enough to analyze only the cases such that M◦ = M◦◦, because when

M◦ = ∆h
AM

◦◦ (for h > 0) we have easily:

M◦ = ∆h
AM

◦◦=⇒+ (by the first statement) ∆h
A∆

k
AN

◦◦ = ∆h+k
A N◦◦

Then either N is not a pair nor a λ-abstraction, which gives ∆h+k
A N◦◦ = N◦ because h > 0, or

otherwise ∆h+k
A N◦◦ = ∆h+k

A N◦ =⇒∗ N◦ by lemma 5.9.

In order to conclude that the reductions in the statements of the lemma contain no expansions, it

suffices to notice that every reduction built in the following proof contains no expansion steps: indeed

it is constructed from one-step reductions that are not expansions or from reductions obtained by

induction hypothesis (and thus without expansions) or from reductions obtained by lemma 5.11,

lemma 5.7, (again without expansions).

Now, we can analyze the cases involved in the proof of the first and the second statement.

— M ≡ ∗. It is in normal form.

— M ≡ x. The only possible case is x
Top
−→ ∗, where x : T. Then, x◦◦ = x

Top
−→ ∗ = ∆0

T∗
◦◦.

— M ≡ (P1Q1).

– If (P1Q1) : T and (P1Q1)
Top
−→ ∗, then (P1Q1)

◦◦ : T by lemma 5.5 and then

(P1Q1)
◦◦ Top
−→ ∗ = ∆0

T∗
◦◦

– If (λx : C.R)Q1
β
−→ R[Q1/x].

((λx : C.R)Q1)
◦◦ = ((λx : C.R)◦◦Q◦

1) = ((λx : C.R◦)Q◦
1)

β
=⇒

R◦[Q◦
1/x] =⇒

∗ (by lemma 5.10) R[Q1/x]
◦
= ∆k

AR[Q1/x]
◦◦

– If (P1Q1) =⇒ (P2Q1), where P1 =⇒ P2.

Since it is not the case that P1
η
−→ P2 because (P1Q1) =⇒ (P2Q1), we have by induction

hypothesis a reduction sequence P ◦◦
1 =⇒+ ∆h

B→AP
◦◦
2 without expansions. Then

(P1Q1)
◦◦ = P ◦◦

1 Q◦
1=⇒

+ (by ind. hyp.) (∆h
B→AP

◦◦
2 )Q◦

1
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If h = 0, then (P ◦◦
2 Q◦

1) = (P2Q1)
◦◦.

If h > 0, then

(∆h
B→AP

◦◦
2 )Q◦

1

⇓+ by lemma 5.7

(λw : B.∆h
A(P

◦◦
2 (∆h

Bw)))Q
◦
1

↓ β

∆h
A(P

◦◦
2 (∆h

BQ
◦
1))

⇓ ∗ by corollary 5.9

∆h
A(P

◦◦
2 Q◦

1) = ∆h
A(P2Q1)

◦◦

– If (P1Q1) =⇒ (P1Q2), where Q1 =⇒ Q2

(P1Q1)
◦◦ = P ◦◦

1 Q◦
1=⇒

+ (by ind. hyp.) P ◦◦
1 Q◦

2 = (P1Q2)
◦◦

— M ≡ 〈P1, Q1〉

– If 〈P1, Q1〉 =⇒ 〈P2, Q1〉, where P1 =⇒ P2.

1 〈P1, Q1〉
◦◦

= 〈P ◦
1 , Q

◦
1〉=⇒

+ (by ind. hyp.) 〈P ◦
2 , Q

◦
1〉 = 〈P2, Q1〉

◦◦
= ∆0

A〈P2, Q1〉
◦◦

2 Since 〈P,Q〉◦◦ = 〈P,Q〉◦, we have 〈P1, Q1〉
◦
=⇒+〈P2, Q1〉

◦
by the previous statement.

– If 〈P1, Q1〉 =⇒ 〈P1, Q2〉, where Q1 =⇒ Q2.

1 〈P1, Q1〉
◦◦

= 〈P ◦
1 , Q

◦
1〉=⇒

+ (by ind. hyp.) 〈P ◦
1 , Q

◦
2〉 = 〈P1, Q2〉

◦◦
= ∆0

A〈P1, Q2〉
◦◦

2 Since 〈P,Q〉◦◦ = 〈P,Q〉◦, we have 〈P1, Q1〉
◦
=⇒+〈P1, Q2〉

◦
by the previous statement.

— M ≡ λx : A.P1

Then λx : A.P1 =⇒ λx : A.P2, where P1 =⇒ P2.

1 (λx : A.P1)
◦◦ = λx : A.P ◦

1=⇒
+ (by ind. hyp.) λx : A.P ◦

2 = ∆0
A→B(λx : A.P2)

◦◦

2 Since (λx : A.Pi)
◦ = (λx : A.Pi)

◦◦ we have (λx : A.P1)
◦=⇒+(λx : A.P2)

◦ by the previous

statement.

— M ≡ ini
C(P1), for i = 1, 2 where P1 =⇒ P2.

Then ini
C(P1) =⇒ ini

C(P2)

ini
C(P1)

◦◦ = ini
C(P

◦
1 )=⇒

+ (by ind. hyp.) ini
C(P

◦
2 ) = ∆0

B+Cin
i
C(P2)

◦◦

— M ≡ πi(P1), for i = 1, 2.

– If πi(P1) : T and πi(P1)
Top
−→ ∗, then πi(P1)

◦◦ : T by lemma 5.5 and πi(P1)
◦◦ Top
−→ ∗ = ∆0

Top∗
◦◦.

– If πi(P1) =⇒ πi(P2), where P1 =⇒ P2.

Since it is not the case that P1
δ
−→ P2 because πi(P1) =⇒ πi(P2), we have by induction hy-

pothesis a reduction sequence P ◦◦
1 =⇒+ ∆h

B×AP
◦◦
2 without expansions. Then

πi(P1)
◦◦ = πi(P

◦◦
1 )=⇒+ (by ind. hyp.) πi(∆

h
A1×A2

P ◦◦
2 )



R. Di Cosmo and D. Kesner 36

If h = 0, then πi(P
◦◦
2 ) = πi(P2)

◦.

If h > 0, then

πi(∆
h
A1×A2

P ◦◦
2 )

⇓+ by lemma 5.7

πi(〈∆
h
A1

π1(P
◦◦
2 ),∆h

A2
π2(P

◦◦
2 )〉)

⇓πi

∆h
Ai
πi(P

◦◦
2 ) = ∆h

Ai
πi(P2)

◦◦

— M ≡ Case(P1, R1, N1)

– If Case(P1, R1, N1) : T and Case(P1, R1, N1)
Top
−→ ∗, then Case(P1, R1, N1)

◦◦ : T by lemma 5.5

and πi(P1)
◦◦ Top
−→ ∗ = ∆0

Top∗
◦◦.

– Case(ini
C1+C2

(S), R1, R2)
ρ
−→ RiS

Case(ini
C1+C2

(S), R1, R2)
◦◦ =

Case(ini
C1+C2

(S)◦, R◦
1, R

◦
2) =

Case(ini
C1+C2

(S◦), R◦
1, R

◦
2)

ρ
=⇒

R◦
1S

◦ =

(∆h
Ci→AR

◦◦
1 )S◦=⇒+ (by lemma 5.7)

(λw : Ci.∆
h
A(R

◦◦
1 (∆h

Ci
w)))S◦ β

−→

∆h
A(R

◦◦
1 (∆h

Ci
S◦)) =⇒∗ by corollary 5.9

∆h
A(R

◦◦
1 S◦) =

∆h
A(R1S)

◦◦

– Case(P1, R1, N1) =⇒ Case(P2, R1, N1), where P1 =⇒ P2.

Case(P1, R1, N1)
◦◦ =

Case(P ◦
1 , R

◦
1, N

◦
1 )=⇒

+ (by ind. hyp.)

Case(P ◦
2 , R

◦
1, N

◦
1 ) =

Case(P2, R1, N1)
◦◦ =

∆0
ACase(P2, R1, N1)

◦◦

– Case(P1, R1, N1) =⇒ Case(P1, R2, N1), where R1 =⇒ R2

Case(P1, R1, N1)
◦◦ =

Case(P ◦
1 , R

◦
1, N

◦
1 )=⇒

+ (by ind. hyp.)

Case(P ◦
1 , R

◦
2, N

◦
1 ) =

Case(P1, R2, N1)
◦◦ =

∆0
ACase(P1, R2, N1)

◦◦

– Case(P1, R1, N1) =⇒ Case(P1, R1, N2), where N1 =⇒ N2
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Case(P1, R1, N1)
◦◦ =

Case(P ◦
1 , R

◦
1, N

◦
1 )=⇒

+ (by ind. hyp.)

Case(P ◦
1 , R

◦
1, N

◦
2 ) =

Case(P1, R1, N2)
◦◦ =

∆0
ACase(P1, R1, N2)

◦◦

— M ≡ (rec y : B.P1)
i

– If (rec y : T.P1)
i : T and (rec y : T.P1)

i Top
−→ ∗, then ((rec y : T.P1)

i)◦◦ : T by lemma 5.5 and

((rec y : T.P1)
i)◦◦

Top
−→ ∗ = ∆0

Top∗
◦◦.

– (rec y : A.P1)
i rec
−→ P1[(rec y : A.P1)

i−1/y]

((rec y : A.P1)
i)◦◦ =

(rec y : A.P ◦
1 )

i rec
−→

P ◦
1 [(rec y : A.P ◦

1 )
i−1/y] =

P ◦
1 [(rec y : A.P1)

i−1◦◦/y] =⇒∗ (by lemma 5.8)

(P1[(rec y : A.P1)
i−1/y])◦ =

∆h
A(P1[(rec y : A.P1)

i−1/y])◦◦

– (rec y : A.P1)
i =⇒ (rec y : A.P2)

i.

((rec y : A.P1)
i)◦◦ =

(rec y : A.P ◦
1 )

i=⇒+ (by ind. hyp.)

(rec y : A.P ◦
2 )

i =

∆0
A((rec y : A.P2)

i)◦◦

5.2. Strong Normalization of the Full Calculus

Having shown that our translation satisfies the hypothesis of Proposition 5.1, all we are now left to

prove is that the bounded reduction system without expansion rules is strongly normalizing. This

can be established by one of the standard techniques of reducibility, and does not present essential

difficulties once the right definitions of stability or reducibility are given.

In 6 we provide a full proof, adapting Girard’s proof from (GLT90), but one can also adapt the

proof provided by Poigné and Voss in (PV87), for which we just provide the basic definitions in 6.4.

It is then finally possible to state the following

Theorem 5.13. (Strong normalization)

The reduction =⇒ for the bounded system with expansions is strongly normalizing.

Proof. By proposition 5.1, theorem 5.12 and Corollary 6.7.

6. Strong Normalization without expansion rules

In this section we will prove the strong normalization property for our calculus λπ∗µσ, with labeled

recursion, but no expansions, using the reducibility method as in (GLT90), with an additional astute

twist to take care of the sum type and labeled recursion.
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6.1. Reducibility

We define the set REDA of reducible terms of type A by induction on the type A as follows:

— For M of atomic type A, M ∈ REDA iff M is strongly normalizable

— For M of product type, M ∈ REDA1×A2
iff πi(M) ∈ REDAi

— For M of a sum type, M ∈ REDA1+A2
iff, for fresh variables wi : Ai, we have

Case(M,λx : A1.〈x,w2〉, λy : A2.〈w1, y〉) ∈ REDA1×A2
(in the case Ai is T, we take ∗ instead of

wi)

— For M of a functional type, M ∈ REDA1→A2
iff for all N ∈ REDA1

, (MN) ∈ REDA2

Some comment on the sum type are needed here: first of all notice that the notion of reducibility

is well defined: reducibility for a sum type is given in term of reducibility for a product type, which

has been defined before. Secondly, notice that for all other types, reducibility is either given directly

as in the case of the base types, or given in terms of reducibility for types that are strictly smaller.

This is not possible for the sum type, because we have no destructor associated to it, but only a

case expression, so reducibility for A+B really depends on reducibility of A and B together , and we

express this fact by reducing it to reducibility of the product A×B.

6.2. Properties of reducibility

Following (GLT90), we define a notion of neutrality : a term is neutral if does not interact with the

surrounding context giving raise to redexes. In our case, the neutral terms are:

∗ x πi(M) Case(P,M,N) (MN) (rec y.M)i

We will prove that REDA enjoys the following properties, for all types A:

(CR1) If M ∈ REDA, then M is strongly normalizable.

(CR2) If M ∈ REDA, and M reduces to M ′, then M ′ ∈ REDA.

(CR3) If M is neutral and whenever we perform on it one step of reduction we obtain a term

M ′ ∈ REDA, then M ∈ REDA.

As a special case of the last clause:

(CR4) If M is neutral and no reduction is applicable to it, then M ∈ REDA.

In particular, ∗ and the variables are reducible (also the variables of type T, as they can only reduce

to ∗, which is reducible).

Proposition 6.1. (Properties of reducibility) For every type A, the set REDA satisfies (CR1),

(CR2) and (CR3).

Proof. We will proceed by induction on the type A.

6.2.1. Atomic types

(CR1) A reducible term of atomic type is strongly normalizable by definition

(CR2) If M is strongly normalizable, then so is every reduct of M (as reduction preserves the type)

(CR3) Suppose all one step reducts of M are reducible, i.e. strongly normalizable. Any reduction

path leaving M must pass through one of its one-step reducts, which are in a finite number, so that
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the longest reduction sequence starting from M has length the maximum among the 1 + ν(M ′),

as M ′ varies over the (one-step) reducts of M . Since these lengths are all finite, M is strongly

normalizing.

6.2.2. Product types

(CR1) Suppose M ∈ REDA1×A2
. Then by definition we know that πi(M) are reducible and so

strongly normalizing by induction hypothesis. This implies that M is strongly normalizing also,

because any reduction sequence starting from M can be turned into a reduction sequence starting

from πi(M).

(CR2) We know that πi(M) ∈ REDAi
, by definition. Now consider the possible one step reducts of

M :

— M reduces to M ′. Then also πi(M) reduces to πi(M
′) via the same reduction, and M ′ is then

reducible by definition

(CR3) Let now M be neutral (not necessarily reducible) such that all its one step reducts are re-

ducible. We must show that πi(M) is reducible of type Ai. Since M cannot be a pair (as it is

neutral), any one step reduction of πi(M) must be to a term πi(M
′), with M ′ one step from M .

By (CR2), M ′ is reducible, and then by definition also πi(M
′) is reducible. Now, πi(M) is neutral

and all its one step reducts are reducible, hence by induction hypothesis (CR3) for Ai, πi(M) is

reducible, hence M is, by definition.

6.2.3. Arrow types

(CR1) Suppose M ∈ REDA1→A2
. Then by definition we know that MN is reducible for all re-

ducible N . In particular, Mx is reducible for a fresh variable x, which is reducible by induction

hypothesis (CR3) for A1, hence Mx is strongly normalizable. This implies that also M is strongly

normalizing, as all reduction sequences starting from M can be performed also on Mx.

(CR2) Let M ∈ REDA1→A2
reduce to M ′. For all N ∈ REDA1

we have (M ′N) ∈ REDA2
, since it is

a reduct of (MN), which is reducible because M and N are. Hence M ′ is reducible by definition.

(CR3) Let now M be neutral (not necessarily reducible) such that all one step reductions lead to

reducible terms. We show that MN is reducible for all reducible N by induction on ν(N), using

(CR3) for A2. Consider a one step reduction of MN : since M is neutral, this reduction must be

either inside M or inside N and leads to:

— M ′N , with M ′ one step from M , so M ′ is reducible and hence M ′N is

— MN ′, with N ′ one step from N ; N ′ is reducible by (CR2) for A1, and ν(N ′) < ν(N), so by

induction hypothesis MN ′ is reducible

Hence all reductions leaving MN lead to a reducible term and hence MN is reducible for all

reducible N , so that M is reducible by definition.

6.2.4. Sum types

(CR1) Suppose M ∈ REDA1+A2
. Then by definition Case(M,λx.〈x,w2〉, λy.〈w1, y〉) ∈ REDA1×A2

is reducible, hence strongly normalizable, hence M is strongly normalizable too.

(CR2) Suppose M ∈ REDA1+A2
reduces to M ′. Then Case(M,λx.〈x,w2〉, λy.〈w1, y〉) ∈ REDA1×A2

reduces to Case(M ′, λx.〈x,w2〉, λy.〈w1, y〉), so that, by (CR2) for A×B which has been proved

before, Case(M,λx.〈x,w2〉, λy.〈w1, y〉) ∈ REDA1×A2
. Hence M ′ is reducible too.
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(CR3) Let now M be neutral, and suppose all its one step reducts are reducible. We will show that

Case(M,λx.〈x,w2〉, λy.〈w1, y〉) (which is neutral) is reducible using (CR3) for A1 × A2, which

has already been proved to hold. Consider the possible one step reducts:

— Case(M ′, λx.〈x,w2〉, λy.〈w1, y〉) with M ′ one step from M : then M ′ is reducible, hence by

definition Case(M ′, λx.〈x,w2〉, λy.〈w1, y〉) is reducible

— there is no other one step reduct as M is neutral and the terms λx.〈x,w2〉 and λy.〈w1, y〉 are

normal

6.3. Reducibility theorem

We are left to show a few more lemmas:

Lemma 6.2. (Pairing) Let M1 : A1, M2 : A2 be reducible terms. Then 〈M1,M2〉 ∈ REDA1×A2
.

Proof. We need to show that πi(〈M1,M2〉) ∈ REDAi
.

Since πi(〈M1,M2〉) is neutral, we prove the statement using (CR3): we will show that all one step

reductions are reducible. We proceed by induction on the sum ν(M1) + ν(M2) of the maximum

reduction lengths for M1 and M2, (which are finite, as these terms are strongly normalizable by

(CR1)).

The possible reducts are:

— Mi, which is reducible by hypothesis

— πi(〈M
′
1,M2〉): now, M

′
1 is one step from M1, so that ν(M ′

1) + ν(M2) < ν(M1) + ν(M2), and M ′
1

is reducible by (CR2), so πi(〈M
′
1,M2〉) is reducible by induction hypothesis

— πi(〈M1,M
′
2〉): this is shown reducible as the term in the previous case

Lemma 6.3. (Abstraction) Let M : A2 be a term where the variable x : A1 may occur free. If for

every N ∈ REDA1
we have M [N/x] ∈ REDA2

, then λx : A1.M ∈ REDA1→A2
.

Proof. We want to show that (λx.M)P is reducible for all reducible P . Since this term is neutral,

we can prove our Lemma using (CR3). We are then left to show that all one step reducts of (λx.M)P

are reducible if for all N ∈ REDA1
we have M [N/x] ∈ REDA2

. Since M = M [x/x] is reducible by

hypothesis (as any variable is reducible), it is strongly normalizable by (CR1), and we can proceed

to prove this last statement by induction on ν(M) + ν(P ). The term (λx.M)P converts to:

— M [P/x] which is reducible by hypothesis

— (λx.M ′)P with M ′ a reduct of M ; now, by (CR2), M ′ is still reducible and furthermore ν(M ′)+

ν(P ) < ν(M) + ν(P ) and M [P/x] reduces to M ′[P/x], and this last term is also reducible,

because it is a multi-step reduct of M [P/x] by Lemma 4.5. So the induction hypothesis tells us

that (λx.M ′)P is reducible.

— (λx.M)P ′ with P ′ a reduct of P ; now, by (CR2), P ′ is still reducible and furthermore ν(M) +

ν(P ′) < ν(M) + ν(P ) and M [P/x] reduces to M [P ′/x], by Corollary 4.8, so this last term is also

reducible. The induction hypothesis tells us that (λx.M)P ′ is reducible.

Lemma 6.4. (Injections) For all terms, M ∈ REDA1
iff ini

A1+A2
(M) ∈ REDA1+A2

.
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Proof. (⇒)

We must show that Case(ini
A1+A2

(M), λx.〈x,w2〉, λy.〈w1, y〉) is reducible of type A1 × A2, i.e. that

πi(Case(ini
A1+A2

(M), λx.〈x,w2〉, λy.〈w1, y〉)) ∈ REDAi
. We will proceed using (CR3), by induction

on ν(M), because πi(Case(ini
A1+A2

(M), λx.〈x,w2〉, λy.〈w1, y〉)) is neutral.

Consider then all its one step reducts:

— ((λx.〈x,w2〉)M), which is reducible becauseM is reducible and λx.〈x,w2〉 is reducible (by Lemma 6.2

applied to the variables x and w2 we know that 〈x,w2〉 is reducible, and we get reducibility of

λx.〈x,w2〉 by Lemma 6.3; similarly if we have ∗ instead of w2)

— πi(Case(ini
A1+A2

(M ′), λx.〈x,w2〉, λy.〈w1, y〉)) with M ′ one step from M , hence reducible and

ν(M ′) < ν(M), so that it is reducible by induction hypothesis

(⇐)

Suppose now, ini
A1+A2

(M) ∈ REDA1+A2
. This means, by definition of reducibility over sum types,

Case(ini
A1+A2

(M), λx.〈x,w2〉, λy.〈w1, y〉) ∈ REDA1×A2
,

which implies, by definition of reducibility over product types,

π1(Case(ini
A1+A2

(M), λx.〈x,w2〉, λy.〈w1, y〉)) ∈ REDA1

This term reduces to π1((λx.〈x,w2〉M)), which in turn reduces to π1(〈M,w〉) and then to M , which

is then reducible by repeated use of (CR2).

Lemma 6.5. (Sum) Let P : A+B, M : A→ C and N : B → C be reducible terms. Then

Case(P,M,N) ∈ REDC .

Proof. We will work by cases on C.

C is an atomic typeWe can use (CR3) for C, as Case(P,M,N) is neutral. We will show by

induction on ν(P ) + ν(M) + ν(N) that all one step reducts of Case(P,M,N) are reducible.

Consider the possible one step reducts:

— Case(P ′,M,N), or Case(P,M ′, N), or Case(P,M,N ′): they are reducible by induction hy-

pothesis as all primed terms are reducible by (CR2) on A + B, A → C, B → C, and the

measure decreases strictly.

— (RM) if P ≡ ini
A1+A2

(R): then R is also reducible by Lemma 6.4, and this term is reducible

as M is

C ≡ C1 × C2 We must show πi(Case(P,M,N)) ∈ REDCi
. Since πi(Case(P,M,N)) is neutral, we

can use (CR3) for Ci. Since P , M , N , are all reducible, they are all strongly normalizable and

we can proceed by induction on the measure ν(P )+ ν(M)+ ν(N). Consider the possible one step

reducts:

— πi(Case(P ′,M,N)) or πi(Case(P,M ′, N)) or πi(Case(P,M,N ′)): they are reducible by in-

duction hypothesis as all primed terms are reducible by (CR2) on A + B, A → C, B → C,

and the measure decreases strictly.

— πi((MR)) if P ≡ ini
A1+A2

(R): then R is also reducible by Lemma 6.4, so MR is reducible and

πi((MR)) too

C ≡ C1 → C2 We must show Case(P,M,N)Q ∈ REDC2
for all Q ∈ REDC1

. Since Case(P,M,N)Q

is neutral, we can use (CR3) for C2. Since P , M , N , Q are all reducible, they are all strongly
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normalizable and we can proceed by induction on the measure ν(P ) + ν(M) + ν(N) + ν(Q).

Consider the possible one step reducts:

— Case(P ′,M,N)Q, or Case(P,M ′, N)Q, or Case(P,M,N ′)Q, or Case(P,M,N)Q′: they are

reducible by induction hypothesis as all primed terms are reducible by (CR2) on A + B,

A→ C, B → C and C1, and the measure decreases strictly.

— (RM)Q if P ≡ ini
A1+A2

(R): then R is also reducible by Lemma 6.4, and this term is reducible

as M and Q are

C ≡ C1 + C2 We must show Case(Case(P,M,N), λx.〈x,w2〉, λy.〈w1, y〉) ∈ REDC1×C2
. We can use

(CR3) for C1 × C2 because Case(Case(P,M,N), λx.〈x,w2〉, λy.〈w1, y〉) is neutral. Since P , M ,

N , are all reducible, they are all strongly normalizable and we can proceed by induction on the

measure ν(P ) + ν(M) + ν(N). Consider the possible one step reducts:

— Case(Case(P ′,M,N), λx.〈x,w2〉, λy.〈w1, y〉) or Case(Case(P,M ′, N), λx.〈x,w2〉, λy.〈w1, y〉)

or Case(Case(P,M,N ′), λx.〈x,w2〉, λy.〈w1, y〉): they are reducible by induction hypothesis

as all primed terms are reducible by (CR2) on A + B, A → C, B → C, and the measure

decreases strictly.

— Case((RM), λx.〈x,w2〉, λy.〈w1, y〉) if P ≡ ini
A1+A2

(R): then R is also reducible by Lemma 6.4,

and this term is reducible by definition as M , hence also (RM), is

We will now prove that every reducible instance of a (not necessarily reducible) term M is reducible.

As a consequence, all terms will be reducible.

Theorem 6.6. (Reducibility) Let M be any term (not assumed to be reducible), and suppose all

the free variables of M are among x1, . . . xn of types A1, . . . An. If N1, . . . Nn are reducible terms of

types A1, . . . An, then M [N/x] is reducible.

Proof. By induction on the structure of M .

1 M is ∗. It is neutral and normal, so it is reducible.

2 M is xi for some i, then M [N/x] = Ni is reducible

3 M ≡ πi(M
′). By induction hypothesis, M ′[N/x] is reducible, hence, by definition, πi(M

′[N/x]) =

πi(M
′)[N/x] is reducible.

4 M ≡ 〈M1,M2〉. By induction hypothesis, the terms Mi[N/x] are reducible, so we conclude that

the term 〈M1[N/x],M2[N/x]〉 = 〈M1,M2〉[N/x] is reducible.

5 M ≡ ini
A1+A2

(M ′). By induction hypothesis, M ′[N/x] is reducible, hence by Lemma 6.4, we have

that ini
A1+A2

(M ′[N/x]) = ini
A1+A2

(M ′)[N/x] is reducible.

6 M ≡ Case(M1,M2,M3). By induction hypothesis, the terms Mi[N/x] are reducible, hence we

have that Case(M1[N/x],M2[N/x],M3[N/x]) = Case(M1,M2,M3)[N/x] is reducible.

7 M ≡ (M1M2). By induction hypothesis, the terms Mi[N/x] are reducible, so we conclude that

the term (M1[N/x]M2[N/x]) = (M1M2)[N/x] is reducible.

8 M ≡ λy.M ′. Then by induction hypothesis M ′[N/x][N ′/y] is reducible for all reducible terms N ′.

By Lemma 6.3, λy.M ′[N/x] = (λy.M ′)[N/x] is reducible.

9 M ≡ (recy.M ′)i. By induction hypothesis, M ′[N/x] is reducible. We will show reducibility for

(recy.M ′)i[N/x] by induction on i+ ν(M ′). Since (recy.M)i[N/x] is neutral, we will use (CR3)

for the type A of (recy.M)i. Consider the one step reducts of (recy.M)i[N/x]
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— (recy.M ′′)i[N/x] with M ′′ one step from M ′. Then M ′′[N/x] is reducible for all reducible
−→
N ,

because it is a multi-step reduct of the reducible term M ′[N/x] (Lemma 4.5). Furthermore,i+

ν(M ′′) < i + ν(M ′), so by induction hypothesis (recy.M ′′[N/x])i = (recy.M ′′)i[N/x] is re-

ducible.

— M ′[N/x][(recy.M ′[N/x])i−1/y]. Then (recy.M ′)i−1[N/x] = (recy.M ′[N/x])i−1 is reducible

by induction hypothesis, and this tells us that [N/x][(recy.M ′[N/x])i−1/y] is a substitution

of reducible terms for a set of variables containing the free variables of M ′, which gives us

reducibility of the term M ′[N/x][(recy.M ′[N/x])i−1/y].

Corollary 6.7. (Strong Normalization) All terms are reducible, hence strongly normalizable.

6.4. Another method

It is also possible to adapt a proof based on the notion of stability , as the one provided by Poingé

and Voss. We just give here the basic definition, and refer the interested reader to (DCK93b) for full

details.

6.5. Stability

We define a set of stable terms of type A by induction on the type A in the following way:

— For M of atomic type A, M is stable if and only if it is strongly normalizing.

— For M of type A1 × A2, M is stable if and only if it is strongly normalizing and whenever M

reduces to 〈M1,M2〉, then M1 and M2 are stable terms of type A1 and A2 respectively.

— For M of type A1 + A2, M is stable if and only if it is strongly normalizing and whenever M

reduces to ini
A1+A2

(M ′) then M ′ is stable of type Ai.

— For M of type A1 → A2, M is stable if and only if for every stable term N of type A1, MN is a

stable term of type A2.

7. Confluence of the Full Calculus

In this section we deduce the confluence property for the calculus with bounded recursion as well as

for the version with unbounded recursion.

We can immediately deduce the confluence property for the bounded system from the weak conflu-

ence and strong normalization properties using Newman’s Lemma, however, we can also provide an

extremely simple and neat proof that does not need the weak confluence property for the expansionary

system.

Theorem 7.1. (Confluence) The relation =⇒ is Church-Rosser.

Proof. Since =⇒ is weakly confluent by theorem 4.11 and strongly normalizing by theorem 5.13

we can conclude that it is Church Rosser by the well known Newman’s lemma.

The other proof of confluence proceeds as follows.

Let M be a term s.t. P1
∗⇐= M =⇒∗ P2. Since =⇒ is strongly normalizing, we can reduce

the terms Pi to their normal forms Pi. Then we have P1
∗⇐= M =⇒∗ P2, and by theorem 5.12
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P1
◦ +⇐=M◦=⇒+P2

◦
without expansions in the reduction sequences. As the system without expan-

sions is confluent (we showed that it is strongly normalizing, and weak confluence without expansions

can be shown as easily as for the simply typed lambda calculus), we can close the internal diagram

with P1
◦
=⇒∗ R ∗⇐= P2

◦
. Now, Pi

◦
=lemma 5.6 Pi and therefore we can complete the proof using

the reductions P1 =⇒∗ P1 =⇒∗ R ∗⇐= P2
∗⇐= P2 (notice that P1 = R = P2). The following figure

shows the reduction diagram:

M

✠�� ∗
�� ❅❅

∗ ❅❅❘
P1 P2

∨
∗

∨
∗

P1 M◦ P2

≡
✠�� ∗

�� ❅❅
∗ ❅❅❘

≡

P2
◦

P2
◦

❅❅
∗ ❅❅❘ ✠�� ∗

��

R

In order to show confluence of the full calculus we relate in the first place the bounded reduction

=⇒ and the unbounded one
∞

=⇒ , and then we use the confluence of =⇒ to show the confluence of
∞

=⇒ . This very same technique, that originates from early work of Lévy (Lév76), was used in (PV87).

The connection between the reductions =⇒ and
∞

=⇒ comes from the following:

Remark 7.2. If M =⇒∗ N , then |M |
∞

=⇒ |N |, where |M | is obtained from M by removing all the

indices from the rec terms.

Lemma 7.3. For any reduction sequence M0
∞

=⇒M1
∞

=⇒ . . .
∞

=⇒Mn, there exists an indexed com-

putation N0 =⇒ N1 =⇒ . . . =⇒ Nn such that |Ni| = Mi, for i = 0 . . . n.

Proof. Index all the rec constructors in M0 by a number n+ k, with k ≥ 0.

Confluence of the full calculus results now from the confluence of the bounded calculus.

Theorem 7.4.
∞

=⇒ is Church Rosser.

Proof. Let M ≡ P0
∞

=⇒ P1
∞

=⇒ . . .
∞

=⇒ Pn and M ≡ Q0
∞

=⇒ Q1
∞

=⇒ . . .
∞

=⇒ Qm. By lemma 7.3

there are indexed computations P
′

0 =⇒ P
′

1 =⇒ . . . =⇒ P
′

n and Q
′

0 =⇒ Q
′

1 =⇒ . . . =⇒ Q
′

m where

|P
′

i | = Pi, for i = 0 . . . n and |Q
′

i| = Qi, for i = 0 . . .m.

We can assume that P
′

0 ≡ Q
′

0 by indexing P 0 and Q0 with n + m. As =⇒ is Church Rosser by

theorem 7.1, there exists a term R such that P
′

n =⇒∗ R and Q
′

m =⇒∗ R. By 7.2 Pn = |P
′

n|
∞

=⇒∗ |R|

and Qm = |Q
′

m|
∞

=⇒∗ |R|.
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8. Adding weak extensionality for the sum type

In this section we show how to apply our techniques in order to accommodate in our system the weak

extensionality for the sum type, that is described by the following equality, which tells us that any

term P of sum type A1 +A2 is definitely an injection from one of the two types Ai.

Case(P, λx.in1(x), λy.in2(y)) = P (1)

This is the usual equality that is found in proof theory, associated to the logical connective for

disjunction (see for example (GLT90; Gir72)). We call this rule “weak” because in category theory

there is another stronger kind of extensional equality associated to the sum, that is used to axiomatize

the uniqueness of the sum of two arrows in the diagram for the coproduct, namely

Case(P,M ◦ λx.in1(x),M ◦ λy.in2(y)) = MP (2)

where M ◦N is the usual abbreviation for the composition λx.(M(Nx)).

One can easily see that this strong rule really breaks down into two simpler rules: the weak rule 1

we just introduced and the following commutation rule:

Case(P,M ◦N1,M ◦N2) = MCase(P,N1, N2) (3)

If one really wants the equality 2, it seems to be a difficult task to provide a confluent system for

the extensional theory with arrow, product and coproduct types, as discussed in (Dou90), and to the

author’s best knowledge, there are no positive results in that direction.

Notice also that the equation 1 can be easily added to a reduction system with no T type, where

all the extensional equalities are turned into contractions, as done for example in (Gal93). In the

presence of the T type, to use contraction rules one is forced to proceed along the lines of (CDC91),

and to generate an infinite set of reduction rules.

It is not obvious to add weak extensionality for the sum to our system, as the näıve idea of adding

the equality 1 as a contraction rule breaks confluence, as the following example shows:

Case(w, λx : A→ B.in1
(A→B)+C(x), λy : C.in2

(A→B)+C(y)) =======⇒ w

‖
⇓

Case(w, λx : A→ B.in1
(A→B)+C(λz : A.xz), λy : C.in2

(A→B)+C(y))

This problem comes from the fact that the term λx : A→ B.in1
(A→B)+C(x) is not in normal form

w.r.t. the rules η, δ and Top. This also suggests the solution: it suffices to completely expand the

terms IN1 = λx.in1(x) and IN2 = λy.in2(y) w.r.t. the rules η, δ and Top (which we know now are

strongly normalizing) before performing the contraction for the weak sum extensional equality.

So we are led to consider the contraction rule:

Case(P, ‖IN1‖, ‖IN2‖)
+

−→ P

where ‖M‖ denotes the normal form of M w.r.t. η, δ and Top expansions.

It is now straightforward to check that the weak confluence property still holds, and one is left to

check that the simulation theorem stays valid.
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For that, we have to verify that Case(P, ‖IN1‖, ‖IN2‖)◦=⇒+P ◦ without using expansion rules in

the reduction sequence, and this is obtained by:

Case(P, ‖IN1‖, ‖IN2‖)◦ =

∆k
A+BCase(P ◦, ‖IN1‖◦, ‖IN2‖◦) =

∆k
A+BCase(P ◦, ‖IN1‖, ‖IN2‖)

+

=⇒

∆k
A+BP

◦ =⇒∗

P ◦

Notice that the rules η, δ and Top do not create new redexes, as shown in lemma 3.7, so in particular

‖IN i‖ is still in normal form, and the equality ‖IN i‖◦ = ‖IN i‖ can be obtained from lemma 5.6.

9. Conclusions

We have provided a confluent rewriting system for an extensional typed λ-calculus with product,

sum, terminal object and recursion, which is also strongly normalizing in case the recursion operator

is bounded. There are mainly two relevant technical contributions in this paper: the weak confluence

proof and the simulation theorem.

On one hand, let us remark once again that the weak confluence property for a context-sensitive

reduction system is not as straightforward as for the reduction systems that are congruencies. The

proof is no longer just a matter of a boring but trivial case analysis, so we had to explore and analyze

here the fine structure of the reduction system, showing clearly how substitution and reduction interact

in the presence of context-sensitive rules.

The simulation theorem, on the other hand, turns out to be the real key tool for this expansionary

system: it allows to reduce both confluence and strong normalization properties to those for the

underlying calculus without expansions, that can be proved using the standard techniques. In a

sense, this is all that you really need to prove.
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