
A confluent reduction for the extensional typed λ−calculus with
pairs, sums, recursion and terminal object

Roberto Di Cosmo∗ Delia Kesner §

Abstract

We add extensional equalities for the functional and product types to the typed λ-calculus
with not only products and terminal object, but also sums and bounded recursion (a version
of recursion that does not allow recursive calls of infinite length). We provide a confluent and
strongly normalizing (thus decidable) rewriting system for the calculus, that stays confluent
when allowing unbounded recursion. For that, we turn the extensional equalities into expansion
rules, and not into contractions as is done traditionally. We first prove the calculus to be weakly
confluent, which is a more complex and interesting task than for the usual λ-calculus. Then
we provide an effective mechanism to simulate expansions without expansion rules, so that the
strong normalization of the calculus can be derived from that of the underlying, traditional, non
extensional system. These results give us the confluence of the full calculus, but we also show
how to deduce confluence directly form our simulation technique, without the weak confluence
property.

1 Introduction

Over the past years there has been a growing interest in the properties of λ-calculus extended with
various different type constructors, in particular pairs and sums, used to represent common data
types. For these type constructors it is customary to provide a set of equalities that are then turned
into computation rules: this is the case, for example, of the elimination rules for pairs:

(π1) π1(〈M,N〉) = M (π2) π2(〈M,N〉) = N

They tell us how to operationally compute with objects of these types: if we have a pair 〈M,N〉,
then we can decompose it to access its first or second component.

There is anyway something else that one likes to do with λ-calculus, besides using λ-terms as
programs to be computed: one would like to reason about programs, to prove that they enjoy
certain properties. Here is where extensional equalities come into play. In the case of functions,
for example, since the only operational way to use a function is to apply it to an argument, we
do not really want to consider a term M of function type different from the term λx.Mx where
x does not occur free in M : both terms, when applied to an argument N , give the same result
MN . Similarly for pairs, the only operational way to use a pair is by projecting out the first or
the second component, so we do not want to consider a term M of product type different from the
term 〈π1(M), π2(M)〉: the result of accessing any of these two terms via a first or second projection
is the same term π1(M) or π2(M).

∗DMI-LIENS (CNRS URA 1347) Ecole Normale Supérieure - 45, Rue d’Ulm - 75230 Paris France
E-mail:dicosmo@dmi.ens.fr
§INRIA Rocquencourt - Domaine de Voluceau, BP 105 - 78153 Le Chesnay Cedex, France and
CNRS and LRI - Bât 490, Université de Paris-Sud - 91405 Orsay Cedex, France
E-mail:kesner@margaux.inria.fr

1

These facts can be incorporated in the calculus in the form of equalities, that one can read in
at least two different ways:

• an operational way: these equalities just state possible optimizations of a program. Since a
term 〈π1(M), π2(M)〉 is more complex then M , but behaves the same way, it is convenient
to replace all its occurrences by M , as this transformation will yield an equivalent, but more
efficient and smaller program. Similarly, we will replace every occurrence of λx.Mx by M .

• a theoretical way: these equalities state a relation between a program and its type. They just
tell us that whenever a term M has a functional type, then it must really be a function, built
by λ-abstraction, so we ought to replace it by λx.Mx if it is not already a function. Similarly,
a term M of product type has to be really a pair, built via the pair constructor, or otherwise
it must be replaced by 〈π1(M), π2(M)〉.

As we will briefly see in the Survey, a lot of research activity has focused on the operational
reading of these equalities in the tradition of λ-calculus, while only a little on the theoretical
one. In this paper we will show how this last reading of the equalities provides a confluent and
strongly normalizing reduction system for the simply typed λ-calculus with pairs, sums, unit type
(or terminal object) and a bounded recursion operator. We also show that the same reduction
system stays confluent when allowing unbounded recursion, while of course loosing the strong
normalization property.

2 Survey

Due to the deep connections between λ-calculus, proof theory and category theory, works on ex-
tensional equalities have appeared with different motivations in all these fields.

By far, the best known extensional equality is the η axiom that we informally introduced above,
written in the λ-calculus formalism as

(η) λx.Mx = M provided x is not free in M

This axiom, also known as extensionality , has traditionally been turned into a reduction, carrying
the same name, by orienting the equality from left to right, interpreting operationally equality as
a contraction. Such an interpretation is well behaved as it preserves confluence [CF58].

In the early 70’s, the attention was focusing on products and the extensional rule for pairs,
called surjective pairing, which is the analog for product types of the usual η extensional rule.

(SP) 〈π1(M), π2(M)〉 = M

With the previous experience of the η rule, it is easy to understand how, at that time, most of the
people thought that the right way to turn such an equality into a rewrite rule was also from left
to right, as a contraction. But in 1980, J.W. Klop discovered [Klo80] that, if added to the usual
confluent rewrite rules for pure λ-calculus, this interpretation of SP breaks confluence1.

Anyway, this first negative result was shortly after mitigated in [Pot81] for the simply typed
λ-calculus with η and SP contractions, by providing a first proof of confluence and strong normal-
ization, later on simplified in different ways (see [Tro86] or [GLT90], for example). From then on,
the contraction rule for SP was not considered harmful in a typed framework, until the seminal work
by Lambek and Scott [LS86]. There, the decision problem of the equational theory of Cartesian
Closed Categories (ccc’s) is solved using a particular typed λ-calculus equipped with not only η and

1See [Bar84], p. 403-409 for a short history and references.

2

SP equalities, but also with a special type T representing the terminal object of the ccc’s2. This
distinguished atomic type comes with a further extensional axiom asserting that there is exactly
one term ∗ of type T:

(Top) M : T = ∗

Now, the type T has the bad property of destroying confluence, if the extensional equalities η and
SP are turned into contraction rules: the following are the critical pairs that arise immediately, as
first pointed out by Obtulowicz, (see [LS86]):

〈∗, π2(x)〉 Top⇐ 〈π1(x), π2(x)〉 ⇒SP x
〈π1(x), ∗〉 Top⇐ 〈π1(x), π2(x)〉 ⇒SP x
(λx : T.M∗) : T→ A Top⇐ (λx : T.Mx) : T→ A ⇒η M
(λx : A.∗) : A→ T Top⇐ (λx : A.Mx) : A→ T ⇒η M

It is indeed possible, but not easy, to extend the contractive reduction system in order to recover
confluence. A first step towards such a confluent system was taken by Poigné and Voss, who were
not inspired by category theory, but by the implementation of algebraic data types [PV87]. In their
paper, they study a calculus that includes λ1βηπ∗, and notice that to solve the previous critical
pairs one needs to add an infinite number of reduction rules (that can be anyway finitely described).
Then confluence of such an extended system can be proved by showing weak confluence and strong
normalization. Unfortunately, the critical pair for (λx : A.Mx) : T→ A is missing there, and the
strong normalization proof is incomplete.

More recently, Curien and the first author got interested in a polymorphic extension of λ1βηπ∗,
that arose in the study of the theory of object oriented programming and of isomorphisms of
types [CDC91]. They give a complete (infinite) set of reduction rules for the calculus, which is
proved confluent using just weak confluence, weak normalization and some additional properties.

Meanwhile, in the field of proof theory, Prawitz was suggesting [Pra71] to turn these extensional
equalities into expansion rules, rather than contractions. Building on such ideas, but motivated by
the study of coherence problems in category theory, Mints gives a first faulty proof that in the typed
framework expansion rules, if handled with care, are weakly normalizing and preserve confluence
of the typed calculus [Min79]3.

This idea of using expansion rules seems to have passed unnoticed for a long time, even if the
so called η-long normal forms were well known and used in the study of higher order unification
problems [Hue76]: only in these last years there has been a renewed interest in expansion rules. In
recent work [Jay92], still motivated by category theoretic investigation, Jay explores a simply typed
λ-calculus with just T and a natural number type N as base types, equipped with an induction
combinator for terms of type N. He introduced expansion rules for η and SP that are exactly the
same as the ones originally used by Mints, and in [JG92] this calculus is proved confluent and
strongly normalizing. Category theory is also the motivation of Cubric [Cub92], who repaired the
bug in the original proof by Mints showing confluence and weak normalization (but not strong nor-
malization). Other recent related works are [Dou93], who provides another proof of confluence and
strong normalization, and [Aka93], where an interesting divide-and-conquer approach is proposed
to prove the same properties.

2.1 Our work

The present paper is inspired by all the previous works, but especially by [Jay92] and [PV87].
We use expansion rules to provide a confluent rewriting system for the typed λ-calculus with not

2This is the Unit type in languages like ML.
3The same idea is present in [Min77].

3

only products and terminal object, but also sums and recursion. This result is derived from the
confluence of a restricted system where recursion is bounded (recursive calls of infinite length are
not allowed), which is proved to be weakly confluent and strongly normalizing.

We show that strong normalization of the full system can be reduced to that of the system
without expansion rules, for which the traditional techniques can be used. For that purpose, we
show that any one step reduction in the calculus with expansions can be simulated by a non-empty
reduction sequence in the calculus without expansions. It turns out that this result is powerful
enough to prove directly also the confluence property, as shown in section 6.

Since the reduction with expansion rules is not a congruence, several fundamental properties
that hold for the well known typed λ-calculi have to be reformulated in the expansionary framework
in a different way as we will shortly see in Section 4. For this reason we believe that the system
with expansion rules deserves to be studied much more carefully, so we will undertake the task of
proving directly weak confluence: this will lead us to uncover many of the essential features of this
reduction.

We introduce now the calculus and its reduction system in section 3, then we investigate the
key properties of the new reduction system: weak confluence (section 4) and strong normalization
(section 5). In section 6 we derive the confluence property in two different ways and finally in the
conclusion we discuss some further applications of our proof techniques. Due to space limitations,
we cannot provide the full proofs, and we refer the interested reader to [DCK93] for full details.

3 The Calculus

It is now time to introduce the calculus we will deal with in this paper. There are two versions,
one with bounded recursion, and the other with unbounded recursion, that differ just in the term
formation rule and in the equality rule for recursive terms. We will now introduce the calculus with
bounded recursion and then describe how the unbounded version can be obtained from it.

3.1 Types and Terms

The set of types of our calculus contains a distinguished type constant T4, a denumerable set of
atomic or base types, and is closed w.r.t. formation of function, product and sum, i.e. if A and B
are types, then also A→ B, A×B and A+B are types.

For each type A, we fix a denumerable set of variables of that type. We will use x, y, z, . . . to
range over variables, and for a term M we write M : A to mean that M is a term of type A.

The term formation rules of the calculus can then be presented as follows.

Γ ` ∗ : T
x1 : A1, . . . , xn : An ` xi : Ai (1 ≤ i ≤ n), where the xi’s are pairwise distinct
If Γ `M : A→ B and Γ ` N : A then Γ ` (MN) : B
If Γ, x : A `M : B then Γ ` λx : A.M : A→ B
If Γ `M : A and Γ ` N : B then Γ ` 〈M,N〉 : A×B
If Γ `M : B1 ×B2 then Γ ` πi(M) : Bi (i = 1, 2)
If Γ `M : Bi then Γ ` iniB1+B2

(M) : B1 +B2 (i = 1, 2)

If Γ ` P : A1 +A2 and Γ `Mi : Ai → D (i = 1, 2) then Γ ` Case(P,M1,M2) : D
If Γ, x : A `M : A then Γ ` (rec x : A.M)i : A (i ≥ 0)

Notation 3.1 (Free variables, substitutions) The set of free variables of a term M will be
noted FV (M). We write [N1, . . . , Nn/x1, . . . , xn] (often abbreviated [N/x]) for the typed substi-

4This stands for the terminal object in ccc’s or for the Unit type in languages like ML.

4

tution mapping each variable xi : Ai to a term Ni : Ai. We write M [N/x] for the term M where
each variable xi free in M is replaced by Ni.

3.2 Equality

Besides the usual identification of terms up to α conversion (i.e. renaming of bound variables), our
calculus is equipped with the following equalities between terms.

(β) (λx : A.M)N = M [N/x]
(π1) π1(〈M1,M2〉) = M1

(π2) π2(〈M1,M2〉) = M2

(ρ) Case(in1C(R),M1,M2) = M1R
Case(in2C(R),M1,M2) = M2R

(Top) M = ∗ if M : T

(η) λx : A.Mx = M if

{
x 6∈ FV (M)
M : A→ B

(δ) 〈π1(M), π2(M)〉 = M if M : A×B
(rec) (rec y : C.M)i+1 = M [(rec y : C.M)i/y]

The index i that is attached to each rec term is a bound on the depth of the recursive calls that
can originate from it. With such a bound, it is possible to insure the strong normalization of the
associated reduction system.

The unbounded system is obtained from the bounded one by simply erasing all the bound
indexes from the formation and equality rules (and the associated reduction rules). As we will show
later, the bounded system can simulate any finite reduction of the unbounded system, and this fact
will make it easy to extend the confluence result for the bounded system to the unbounded one.
For simplicity, we will explicitly note the bound index only when necessary, dropping it whenever
the properties we discuss hold in both systems.

3.3 The confluent rewriting system

The non extensional equality rules and the rule for T can be turned into a confluent rewriting
system by orienting them from left to right, as follows

(β) (λx : A.M)N −→ M [N/x]
(πi) πi(〈M1,M2〉) −→ Mi, for i = 1, 2
(ρ) Case(iniC(R),M1,M2) −→ MiR, for i = 1, 2
(rec) (rec y : C.M)i+1 −→ M [(rec y : C.M)i/y], for i ≥ 0
(Top) M −→ ∗ if M : T and M 6= ∗

But when we want to turn the extensional equalities for functions and pairs into expansions, as
explained very clearly by Jay, we must be careful to avoid the following reduction loops:

λx.M ; λy.(λx.M)y ; λy.M [y/x] =α λx.M
〈M,N〉 ; 〈π1(〈M,N〉), π2(〈M,N〉)〉 ; 〈M,N〉
MN ; (λx.Mx)N ; MN
πi(P) ; πi(〈π1(P), π2(P)〉) ; πi(P)

To break the first two loops we must disallow expansions of terms that are already λ-abstractions
or pairs:

(η) M −→ λx : A.Mx if

{
x 6∈ FV (M)
M : A→ B and M is not a λ-abstraction

(δ) M −→ 〈π1(M), π2(M)〉 if
{
M : A×B and M is not a pair

But this is not enough: to break the last two loops we must also forbid the η expansion of a
term in a context where this term is applied to an argument, and δ expansion of a term when such

5

a term is the argument of a projection. This means that we cannot define the one-step reduction
relation =⇒ on terms as the least congruence on terms containing the above reductions −→ , as
is done usually. Instead, one defines formally M =⇒M ′ starting from −→ by induction on the
structure of the term. The definition is the same as a congruence closure but for the two last cases.

Definition 3.2 (One-step reduction)
• If M −→M ′, then M =⇒M ′

• If M =⇒M ′, then (rec x : A.M)i =⇒ (rec x : A.M ′)i

Case(M,N,O) =⇒ Case(M ′, N,O) in1C(M) =⇒ in1C(M ′) 〈M,N〉 =⇒ 〈M ′, N〉
Case(N,M,O) =⇒ Case(N,M,′O) in2C(M) =⇒ in2C(M ′) 〈N,M〉 =⇒ 〈N,M ′〉
Case(N,O,M) =⇒ Case(N,O,M ′) λ x : A.M =⇒ λ x : A.M ′ NM =⇒ NM ′

• If M =⇒M ′ but M
¬η−→M ′, then MN =⇒M ′N

• If M =⇒M ′ but M
¬δ−→M ′, then πi(M) =⇒ πi(M

′) for i = 1, 2
where

¬η−→ stands for a −→ step that is not an η step, and similarly for δ.

Notation 3.3 The transitive and the reflexive transitive closure of =⇒ are noted =⇒+ and =⇒∗
respectively. Similarly we define

∞
=⇒ ,

∞
=⇒+ and

∞
=⇒∗ for the unbounded system.

We will use some standard notions from the theory of rewriting system, such as redex, normal
form, confluence, weak confluence, strong normalization, etc, without explicitly redefining them
here.

It is also useful to define a notion of influential positions of a term: informally, a position in a
term is influential if it prevents an expansion rule from being applied at the root of the subterm
found at that position. For example, M occurs at an influential position in the term MN , as η
expansion is forbidden on M , no matters if it is a λ-abstraction or not. Obviously, a position in a
term can be influential for η or for δ, but not for both. This notion can be properly formalized, by
induction on the structure of the terms, as shown in the full paper.

3.4 Adequacy of expansions for extensional equalities

First of all, it is necessary to show that the limitations imposed on the reduction system do not
make us loose any valid equality. We will show that the reduction system just introduced really
generates the equalities we defined for the calculus. This comes from the fact that the limitations
imposed on the reductions are introduced exactly to avoid reduction loops.

Theorem 3.4 (=⇒ generates E) The equality E and the reflexive, symmetric and transitive
closure R of =⇒ are the same relation.

Proof.
The fact that R is included in E is evident, as all the reductions rules are derived from the

equality axioms by orienting and restricting them.
What we are left to show is E ⊆ R. It is enough to show that whenever M = N comes from

a single equality axiom, we can either rewrite M to N or N to M (since R is reflexive, symmetric
and transitive, the other cases will follow trivially).

The basic idea of the proof is to associate to each of these equality steps a reduction step in
R. This is done in the obvious way, except in the cases that would violate one of the restrictions
imposed on the expansion rules, which we will solve using exactly the reduction loop that this
restriction is supposed to prevent.

Here are the problematic cases and how to deal with them. We use the usual context notation
C[M] to indicate a particular occurrence of a subterm M of interest in the term C[M].

6

• C[λx.M] =η C[λy.(λx.M)y]. We cannot associate an η reduction to this equality, as we
cannot expand something that is already an abstraction. But we can associate to it a β
reduction from C[λy.(λx.M)y] to C[λy.M [y/x]] = C[λx.M].

• C[〈M,N〉] =δ 〈π1(〈M,N〉), π2(〈M,N〉)〉]. We cannot expand something that is already a
pair, but we can use the πi’s reduction from 〈π1(〈M,N〉), π2(〈M,N〉)〉] to C[〈M,N〉].

• C[MN] =η C[(λx.Mx)N]. Here we cannot expand M , which is in an influential position, but
again we can use β to go from C[(λx.Mx)N] to C[MN] (recall that x 6∈ FV(M)).

• C[πi(P)] =δ C[πi(〈π1(P), π2(P)〉)]. We cannot expand P , but we can use the πi’s to go to
C[πi(P)] from C[πi(〈π1(P), π2(P)〉)].

2

This calculus also enjoys the subject reduction property, so reductions preserve types.

Proposition 3.5 (Subject Reduction) If Γ ` R : C and R =⇒∗ R′, then Γ ` R′ : C

4 Weak Confluence

In this section we set off to prove that the reduction system proposed above is actually weakly
confluent, i.e. that whenever M ′ ⇐=M =⇒M ′′ we can find a term M ′′′ s.t. M ′ =⇒∗M ′′′ ∗⇐= M ′′.
The proof is fairly more complex here than in the case of λ-calculus where extensional equalities are
interpreted as contractions, and this is due to the fact that the reduction relation =⇒ introduced
above is not a congruence on terms.

4.1 Some difficulties

In particular, in the simply typed λ−calculus whenever M =⇒∗M ′ then πi(M) =⇒∗ πi(M ′), and
if also N =⇒∗ N ′, then MN =⇒∗M ′N ′, but this is no longer true now: indeed, we have x :
A→ B =⇒ λz : A.xz, but xN cannot reduce to (λz : A.xz)N .

These properties still hold for those reduction sequences M =⇒∗M ′ that do not involve expan-
sions at the root:

Remark 4.1 Let M ≡ M0 =⇒M1 =⇒ . . . =⇒Mn−1 =⇒Mn ≡ M ′ be a reduction sequence
where none of the Mi’s is expanded at the root. Then πi(M) =⇒∗ πi(M ′), for i = 1, 2, and, if
N =⇒∗ N ′, then MN =⇒∗M ′N ′.

4.2 Solving Critical Pairs

In this calculus, it is no longer true that reduction is stable by substitution, as in the traditional
λ-calculus: if P =⇒ P ′, N =⇒ N ′, it is not true in general that P [N/x] =⇒∗ P ′[N ′/x].

Indeed, x : A→ B =⇒ λz : A.xz, but x[λy : A.w/x] = λy : A.w cannot reduce in our system
to λz : A.(λy : A.w)z = λz : A.xz[λy : A.w/x], and (yM)[x/y] = xM cannot reduce to (λz :
A.xz)M = (yM)[λz : A.xz/y].

We can prove some weaker properties: if P =⇒ P ′, then P [N/x] and P ′[N/x] have a common
reduct (Lemma 4.2), and similarly P [N/x] and P [N ′/x] when N =⇒ N ′ (Lemma 4.3). This suffices
for our purpose of proving weak confluence of the reduction system.

7

Lemma 4.2 (Substitution Lemma (i))
If P =⇒ P ′, then P [N/x] =⇒∗ P ′[N/x] or P ′[N/x] =⇒∗ P [N/x]. Moreover, if no expansion take
place at the root position of P , then there are no expansions at root positions in the reduction
sequences P [N/x] =⇒∗ P ′[N/x] and P ′[N/x] =⇒∗ P [N/x].

Lemma 4.3 (Substitution Lemma (ii))

If N
R

=⇒ N ′, then M [N/x] =⇒∗M ′′ ∗⇐= M [N ′/x] for some term M ′′. These reduction sequences
contain expansions at the root only if M ≡ x and R is an expansion applied at the root of N .

Example 4.4 Take M = 〈xy, x〉, N = w and N ′ = λz : A.wz. Then

M [N/x] = 〈wy,w〉 =⇒ 〈wy, λz : A.wz〉 ⇐=〈(λz : A.wz)y, λz : A.wz〉 = M [N ′/x]

Lemma 4.2 and 4.3 suffice to prove that all critical pairs arising from a term M by a β-
reduction and another reduction rule can be solved. The other critical pairs are treated in full
details in [DCK93]. We can then state the following:

Proposition 4.5 (Critical Pairs are solvable)
If M →M ′ and M =⇒M ′′, then ∃R such that M ′ =⇒∗ R and M ′′ =⇒∗ R.

4.3 From Solved Critical Pairs to Full Weak Confluence

It is to be noted that the solvability of critical pairs we just proved as Proposition 4.5 does not
allow us to deduce the weak confluence of the calculus via the famous Knuth-Bendix Critical Pairs
Lemma. That Lemma holds only for algebraic rewrite systems, and not for the λ-calculus, that
has the higher order rewrite rule β. We need to prove local confluence explicitly, and to do so the
following remark is useful.

Remark 4.6 (Expansion rules) In case the two reductions M ′ ←−M =⇒M ′′ do not involve η
(resp. δ) rules applied at the root positions of M , it is possible to close the diagram without using
η (resp. δ) rules at the root, except in the three cases shown below: external π’s and internal η,
external β and internal δ. Notice that M is not a λ- abstraction in the first diagram, N is not a
λ- abstraction in the second and M [N/x] is not a pair in the third one.

π1(〈M,N〉) =
η
=⇒ π1(〈λx.Mx,N〉)

π
∨

‖
⇓
π

M =====
η
====⇒ λx.Mx

π2(〈M,N〉) =
η
=⇒ π2(〈M,λx.Nx〉)

π
∨

‖
⇓
π

N =====
η
====⇒ λx.Nx

(λx : A.M)N =
δ
=⇒ (λx : A.〈π1(M), π2(M)〉)N

β
∨

‖
⇓
β

M [N/x] ===
δ
=⇒ 〈π1(M [N/x]), π2(M [N/x])〉

8

With this additional knowledge, we can prove that =⇒ is actually weakly confluent.

Theorem 4.7 (Weak Confluence) If M ′ ⇐=M =⇒M ′′ then there exist a term M ′′′ such that
M ′ =⇒∗M ′′′ ∗⇐= M ′′ (i.e. the reduction relation =⇒ is weakly confluent). Furthermore, if the
reductions in M ′ ⇐=M =⇒M ′′ do not contain η (resp. δ) rules applied at the root of M , it is
possible also to close the diagram without applying η (resp. δ) rules at the root, except in the cases
shown in the previous Remark 4.6.

5 Strong Normalization

We provide in this section the proof of strong normalization for our calculus. The key idea is
to reduce strong normalization of the system with expansion rules to that of the system without
expansion rules and for this, we show how the calculus without expansions can be used to simulate
the calculus with expansions. We will use a fundamental property relating strong normalization of
two systems:

Proposition 5.1 Let R1 and R2 be two reduction systems and T a translation from terms in R1 to

terms in R2. If for every reduction M1
R1=⇒M2 there is a non empty reduction sequence P1

R2=⇒+P2

such that T (Mi) = Pi, for i = 1, 2, then the strong normalization of R2 implies that of R1.

Proof. Suppose R2 is strongly normalizing and R1 is not. Then there is an infinite reduction se-

quence M1
R1=⇒M2

R1=⇒ . . . and from this reduction we can construct an infinite reduction sequence

T (M1)
R2=⇒+T (M2)

R2=⇒+ . . . which leads to a contradiction. 2

The goal is now to find a translation of terms mapping our calculus into itself such that for every
possible reduction in the original system from a term M to another term N , there is a reduction
sequence from the translation of M to the translation of N , that is non empty and does not contain
any expansion. Then the previous proposition allows us to derive the strong normalization property
for the full system from that of the system without expansion rules, which can be proved using
standard techniques.

5.1 Simulating Expansions without Expansions

The first näıve idea that comes to the mind is to choose a translation such that expansion rules
are completely impossible on a translated term. This essentially amounts to associate to a term
M its η-δ normal form, so that translating a term corresponds then to executing all the possible
expansions.

Unfortunately, this simple solution is not a good one: if M reduces to N via an expansion,
then the translation of M and that of N are the same term, so to such a reduction step in the full
system corresponds an empty reduction sequence in the translation, and this does not allow us to
apply proposition 5.1.

This leads us to consider a more sophisticated translation that maps a term M to a term M◦

where expansions are not fully executed as above, but just marked in such a way that they can be
executed during the simulation process, if necessary, by a rule that is not an expansion.

Let us see how to do this on a simple example: take a variable z of type A1 × A2, where the
Ai’s are atomic types different from T. By performing a δ expansion we obtain its normal form
w.r.t. expansion rules: 〈π1(z), π2(z)〉. Instead of executing this reduction, we just mark it in the
translation by applying to z an appropriate expansor term λx : A1 × A2.〈π1(x), π2(x)〉. As for

9

〈π1(z), π2(z)〉, it is in normal form w.r.t. expansions, so the translation does not modify it in any
way. Now, we have the reduction sequence

z◦ ≡ (λx : A1 ×A2.〈π1(x), π2(x)〉)z →β 〈π1(z), π2(z)〉

where the translation of z reduces to the translation of 〈π1(z), π2(z)〉, and the δ expansion from
z to 〈π1(z), π2(z)〉 is simulated in the translation by a β-rule. Clearly, in a generic term M there
are many positions where an expansion can be performed, so the translation will have to take into
account the structure of M and insert the appropriate expansors at all these positions.

Anyway, expansors must be carefully defined to correctly represent not only the expansion step
arising from a redex already present in M , but also all the expansion sequences that such step can
create: if in the previous example the type A1 is taken to be an arrow type and the type A2 a
product type, then the term π1(z) can be further η-expanded and the term π2(z) can be expanded
by a δ-rule, and the expansor λx : A1 × A2.〈π1(x), π2(x)〉 cannot simulate these further possible
reductions. This can only be done by storing in the expansor terms all the information on possible
future expansions, that is fully contained in the type of the term we are marking.

Definition 5.2 (Translation) To every type C we associate a term, called the expansor of type
C and denoted ∆C , defined by induction as follows:

∆A→B = λx : A→ B.λz : A.∆B(x(∆Az))
∆A×B = λx : A×B.〈∆A(π1(x)),∆B(π2(x))〉
∆A is empty, in any other case

We then define a translation M◦ for a term M : A as follows:

M◦ =

{
M◦◦ if M is a λ-abstraction or a pair
∆k
AM

◦◦ for any k > 0 otherwise

where ∆k
AM denotes the term (∆A . . . (∆A︸ ︷︷ ︸

k times

M) . . .) and M◦◦ is defined by induction as:

x◦◦ = x (λx : B.M)◦◦ = λx : B.M◦

∗◦◦ = ∗ (rec y : A.M)i
◦◦

= (rec y : A.M◦)i

〈M,N〉◦◦ = 〈M◦, N◦〉 Case(R,M,N)◦◦ = Case(R◦,M◦, N◦)
(MN)◦◦ = (M◦◦N◦) πi(M)◦◦ = πi(M

◦◦)
iniC(M)◦◦ = iniC(M◦)

This corresponds exactly to the marking procedure described before, but for a little detail: in the
translation we allow any number of markers to be used (the integer k can be any positive number),
and not just one as seemed to suffice for the examples above.

The need for this additional twist in the definition is best understood with an example. Consider
two atomic types A and B and the term (λx : A×B.x)z: if k is fixed to be one (i.e. we allow only one
expansor as marker) then its translation ((λx : A×B.x)z)◦ is ∆A×B((λx : A×B.∆A×Bx)∆A×Bz).

Now (λx : A× B.x)z
β−→ z, so we have to verify that ((λx : A× B.x)z)◦ reduces to z◦ in at least

one step. We have:

∆A×B((λx : A×B.∆A×Bx)∆A×Bz) =⇒ ∆A×B∆A×B∆A×Bz

However, even if both ∆3
A×Bz and ∆A×Bz reduce to the same term 〈π1(z), π2(z)〉, it is not true that

∆3
A×Bz =⇒∗ ∆A×Bz. Anyway, if we admit ∆3

A×Bz as a possible translation of z we will have the

10

desired property relating reductions and translations. Hence, to be precise, our method associates
to each term not just one translation, but a whole family of possible translations, all with the same
structure, but with different numbers of expansors used as markers.

What is important for our proof is that when we are given a reduction M1 =⇒M2 . . . =⇒Mn

in the full calculus, then no matter which possible translation M◦1 we choose for M1, the reductions
used in the simulation process all go through possible translations M◦i of the Mi.

Translations preserve types and leave unchanged terms where expansions are not possible.

Lemma 5.3 (Type Preservation) If Γ `M : A, then Γ `M◦ : A and Γ `M◦◦ : A.

Lemma 5.4 If M is in normal form or in η-δ normal form, then M◦ = M .

The next step is to prove that we can apply proposition 5.1 to our system, i.e, for every one
step reduction from M to N in the full system, there is a non empty reduction sequence in the
system without expansions from any translation of M to a translation of N .

The following property is essential to show that every time we perform a β-reduction on a
term M in the original system, any translation of M reduces to a translation of the term we have
obtained via →β from M . Take for example the reduction (λx : A.M)N →β M [N/x]. We know
that ((λx : A.M)N)◦ = ∆k

A((λx : A.M◦)N◦) and we want to show that there is a non empty
reduction sequence leading to M [N/x]◦. Since ∆k

A((λx : A.M◦)N◦) →β ∆k
AM

◦[N◦/x], we have
now to check that the term (M [N/x])◦ can be reached. We state the property as follows:

Lemma 5.5 If Γ ` M : A, then ∀k ≥ 0, ∆k
AM

◦[N◦/x] =⇒∗ (M [N/x])◦ and no expansions are
performed in the reduction sequences.

Using 5.5 we can show now:

Theorem 5.6 (Simulation) If Γ ` M : A and M =⇒ N , then M◦=⇒+N◦ and there are no
expansions in the reduction sequences.

5.2 Strong Normalization of the Full Calculus

Having shown that our translation satisfies the hypothesis of Proposition 5.1, all we are now left to
prove is that the bounded reduction system without expansion rules is strongly normalizing. This
can be established by one of the standard techniques of reducibility, and does not present essential
difficulties once the right definitions of stability or reducibility are given. In the full paper we
provide two proofs, one adapting the proof provided by Poigné and Voss in [PV87], and the other
adapting Girard’s proof from [GLT90]. These standard techniques apply straightforwardly, but the
interested reader will nevertheless find in the full paper all the details. It is then finally possible to
state the following

Theorem 5.7 (Strong normalization)
The reduction =⇒ for the bounded system with expansions is strongly normalizing.

Proof. By proposition 5.1, theorem 5.6 and the strong normalization of the bounded calculus
without expansions . 2

11

6 Confluence of the Full Calculus

We can immediately deduce the confluence property for the bounded system from the weak con-
fluence and strong normalization properties using Newman’s Lemma, however, we can also provide
an extremely simple and neat proof that does not need the weak confluence property for the ex-
pansionary system.

Theorem 6.1 (Confluence) The relation =⇒ is Church-Rosser.

Proof. Let M be a term s.t. P1
∗⇐= M =⇒∗ P2. Since =⇒ is strongly normalizing,

we can reduce the terms Pi to their normal forms Pi. Then we have P1
∗⇐= M =⇒∗ P2, and by

theorem 5.6 P1
◦ +⇐=M◦=⇒+P2

◦
without expansions in the reduction sequences. As the system

without expansions is confluent (we showed that it is strongly normalizing, and weak confluence
without expansions can be shown as easily as for the simply typed lambda calculus), we can close the
internal diagram with P1

◦
=⇒∗ R ∗⇐= P2

◦
. Now, Pi

◦
=lemma 5.4 Pi and therefore we con complete

the proof using the reductions P1 =⇒∗ P1 =⇒∗ R ∗⇐= P2
∗⇐= P2 (notice that P1 = R = P2). 2

In order to show confluence of the full calculus we relate in the first place the bounded reduction
=⇒ and the unbounded one

∞
=⇒ , and then we use the confluence of =⇒ to show the confluence

of
∞

=⇒ . This very same technique, that originates from early work of Lévy [Lév76], was used
in [PV87]. The connection between the reductions =⇒ and

∞
=⇒ comes from the following:

Remark 6.2 If M =⇒∗ N , then |M | ∞=⇒ |N |, where |M | is obtained from M by removing all the
indices from the rec terms.

Lemma 6.3 For any reduction sequence M0
∞

=⇒M1
∞

=⇒ . . .
∞

=⇒Mn, there exists an indexed com-
putation N0 =⇒ N1 =⇒ . . . =⇒ Nn such that |Ni| = Mi, for i = 0 . . . n.

Confluence of the full calculus results now from the confluence of the bounded calculus.

Theorem 6.4
∞

=⇒ is Church Rosser.

7 Conclusion and Future Work

We have provided a confluent rewriting system for an extensional typed λ-calculus with product,
sum, terminal object and recursion, which is also strongly normalizing in case the recursion oper-
ator is bounded. There are mainly two relevant technical contributions in this paper: the weak
confluence proof and the simulation theorem.

On one hand, let us remark once again that the weak confluence property for a context-sensitive
reduction system is not as straightforward as for the reduction systems that are congruencies. The
proof is no longer just a matter of a boring but trivial case analysis, so we had to explore and
analyze here the fine structure of the reduction system, showing clearly how substitution and
reduction interact in the presence of context-sensitive rules.

The simulation theorem, on the other hand, turns out to be the real key tool for this expan-
sionary system: it allows to reduce both confluence and strong normalization properties to those
for the underlying calculus without expansions, that can be proved using the standard techniques.
In a sense, this is all that you really need to prove.

It is also important to remark that our techniques can be applied to many other calculi with
expansionary rules. For example, we can accommodate in our calculus the weak extensionality
for the sum type5 which is commonly used in proof theory(see [Gir72], for example), namely
Case(P, λx.in1(x), λy.in2(y)) = P . We refer the interested reader to [DCK93] for more details.

5The extensional equality for sums is very problematic in its full form, see [Dou90] for a detailed discussion.

12

References

[Aka93] Yohji Akama. On mints’ reductions for ccc-calculus. In Typed Lambda Calculus and Applications,
number 664 in LNCS. Springer Verlag, 1993.

[Bar84] Henk Barendregt. The Lambda Calculus; Its syntax and Semantics (revised edition). North Hol-
land, 1984.

[CDC91] Pierre-Louis Curien and Roberto Di Cosmo. A confluent reduction system for the λ-calculus with
surjective pairing and terminal object. In Leach, Monien, and Artalejo, editors, Intern. Conf. on
Automata, Languages and Programming (ICALP), number 510 in LNCS, pages 291–302. Springer-
Verlag, 1991.

[CF58] H.B. Curry and R. Feys. Combinatory Logic, volume 1. North Holland, 1958.

[Cub92] D. Cubric. On free ccc. Distributed on the types mailing list, 1992.

[DCK93] Roberto Di Cosmo and Delia Kesner. Simulating expansions without expansions. Technical report,
INRIA, 1993. To appear.

[Dou90] Daniel J. Dougherty. Some reduction properties of a lambda calculus with coproducts and recursive
types. Technical report, Wesleyan University, 1990. E-mail: ddougherty@eagle.wesleyan.edu.

[Dou93] Daniel J. Dougherty. Some lambda calculi with categorical sums and products. In Proc. of the
Fifth International Conference on Rewriting Techniques and Applications (RTA), 1993.

[Gir72] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures dans l’arithmétique
d’ordre supérieure. Thèse de doctorat d’état, Université de Paris VII, 1972.

[GLT90] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University Press,
1990.

[Hue76] Gérad Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω. Thèse d’Etat, Université
Paris VII, 1976.

[Jay92] C. Barry Jay. Long βη normal forms and confluence (and its revised version). Technical Report
ECS-LFCS-91-183, LFCS, University of Edimburgh, 1992.

[JG92] C. Barry Jay and Neil Ghani. The virtues of eta-expansion. Technical Report ECS-LFCS-92-243,
LFCS, University of Edimburgh, 1992.

[Klo80] Jan Willem Klop. Combinatory reduction systems. Mathematical Center Tracts, 27, 1980.

[Lév76] Jean-Jaques Lévy. An algebraic interpretation of the λβκ-calculus and a labelled λ-calculus.
Theoretical Computer Science, 2:97–114, 1976.

[LS86] Joachim Lambek and Philip J. Scott. An introduction to higher order categorical logic. Cambridge
University Press, 1986.

[Min77] Gregory Mints. Closed categories and the theory of proofs. Zapiski Nauchnykh Seminarov
Leningradskogo Otdeleniya Matematicheskogo Instituta im. V.A. Steklova AN SSSR, 68:83–114,
1977.

[Min79] Gregory Mints. Teorija categorii i teoria dokazatelstv.I. Aktualnye problemy logiki i metodologii
nauky, pages 252–278, 1979.

[Pot81] Garrel Pottinger. The Church Rosser Theorem for the Typed lambda-calculus with Surjective
Pairing. Notre Dame Journal of Formal Logic, 22(3):264–268, 1981.

[Pra71] D. Prawitz. Ideas and results in proof theory. Proceedings of the 2nd Scandinavian Logic Sympo-
sium, pages 235–307, 1971.

[PV87] Axel Poigné and Josef Voss. On the implementation of abstract data types by programming
language constructs. Journal of Computer and System Science, 34(2-3):340–376, April/June 1987.

[Tro86] Ann S. Troelstra. Strong normalization for typed terms with surjective pairing. Notre Dame
Journal of Formal Logic, 27(4), 1986.

13

